
www.manaraa.com

Minimizing Technical Barriers to Learning Programming

By

MARTIN VELEZ

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Computer Science

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Zhendong Su, Chair

Premkumar Devanbu

Vladimir Filkov

Committee in Charge

2019

-i-

www.manaraa.com

ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

ProQuest

Published by ProQuest LLC (). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

13422825

13422825

2019

www.manaraa.com

Copyright © 2019 by

Martin Velez

All rights reserved.

www.manaraa.com

To my parents, my wife, and my son.

-ii-

www.manaraa.com

CONTENTS

List of Figures . vi

List of Tables . x

Abstract . xi

Acknowledgments . xiv

1 Introduction 1

2 Student Adoption and Perceptions of a Web Integrated Development Envi-

ronment 8

2.1 Introduction . 9

2.2 Related Work . 11

2.3 KODETHON Description and Adoption . 14

2.3.1 Main Features . 14

2.3.2 Architecture . 16

2.3.3 Deployment and Adoption . 18

2.4 User Survey . 21

2.5 Results . 22

2.5.1 Usage . 23

2.5.2 Perceptions . 24

2.5.3 Characteristics of Adopters . 28

2.6 Broader Lessons . 29

2.7 Threats to Validity . 31

2.8 Conclusion and Future Work . 32

3 CompAssist: Synthesizing Minimal Compilation Repair Examples 33

3.1 Introduction . 34

3.2 Overview . 38

3.3 Offline Generation . 39

3.3.1 Fuzzing a Compilable Program 41

-iii-

www.manaraa.com

3.3.2 Reducing a Compilation Repair Example 42

3.4 Online Search . 44

3.5 Evaluation . 46

3.5.1 Experimental Setup . 46

3.5.2 Error Message Coverage (Breadth) 47

3.5.3 Error Message Coverage (Depth) 48

3.5.4 Repair Example Simplicity . 49

3.6 User Study . 51

3.6.1 Pilot Studies . 51

3.6.2 Design . 52

3.6.3 Results . 54

3.6.4 Additional Feedback . 57

3.7 Discussion . 58

3.8 Related Work . 60

3.8.1 Compiler Error Augmentation . 60

3.8.2 Automated Program Repair . 62

3.9 Conclusion and Future Work . 63

4 On the Lexical Distinguishability of Source Code 64

4.1 Introduction . 65

4.2 Problem Formulation . 67

4.2.1 Bag-of-Words Model . 68

4.2.2 Lexicons . 68

4.2.3 Illustration of the Bag-of-Words Model 69

4.2.4 Distinguishable Code . 71

4.2.5 The MINSET Algorithm . 73

4.3 Setup and Implementation . 75

4.3.1 Code Corpus . 76

4.3.2 The Feature Extractor . 77

4.3.3 The MINSET Algorithm Implementation 78

-iv-

www.manaraa.com

4.4 Results and Analysis . 78

4.4.1 Lexical Distinguishability of Source Code 80

4.4.2 Minsets over LEX . 82

4.4.3 What is a Natural, Minimal Lexicon? 83

4.4.4 The Effect of Multiplicity and Abnormally Large Methods on Dis-

tinguishability . 88

4.4.5 Minset Over MIN4 . 92

4.5 Discussion . 94

4.6 Applications . 95

4.7 Related Work . 96

4.8 Conclusion and Future Work . 98

5 Conclusion 99

-v-

www.manaraa.com

LIST OF FIGURES

2.1 KODETHON User Interface: File navigator, editor, and CDE Shell. 13

2.2 KODETHON Architecture: The user interacts with an AngularJS frontend.

The frontend communicates with a master server. The master server

handles user requests and orchestrates worker nodes in the cluster. . . . 16

2.3 User sign up history. As of April 2018, 3, 041 users have signed up to use

KODETHON. 20

2.4 The lines of code students have written using KODETHON by program-

ming language. This chart shows the top-10 languages and Lisp which is

ranked 25 but is teaching language used at University of California, Davis. 20

2.5 Ethnicity Distribution . 22

2.6 “List the most negative aspect(s) of KODETHON:” 28

2.7 Adoption by students by university standing. 29

3.1 COMPASSIST User Interface: A user types a C++ program, and com-

piles it with the “Compile” button. The system shows colorized compiler

output. If the program triggers a compiler error, COMPASSIST suggests

repair patches with minimal examples to help a user understand the

suggested patch. This C++ program was posted to StackOverflow by a

person seeking help understanding and repairing the compiler error. We

label this program T10 in our user study. 37

3.2 COMPASSIST Architecture: The generator synthesizes example fixes from

a collection of compilable seed programs. The search engine retrieves

and ranks example fixes given a user program as a query. The web user

interface presents example fixes and suggest possible patches when the

user program fails to compile. 37

-vi-

www.manaraa.com

3.3 This is a compilation repair example produced by our FUZZ implementa-

tion. Deleting a comma from line 4 transforms this compilable program

c into an uncompilable program u. The seed is the GCC Test Suite test

case “constexpr-60245.C”. 39

3.4 This is a reduced compilation repair example produced by our REDUCE

algorithm. Compare this with the repair example shown in Figure 3.3.

Both trigger the same error message and both are fixed with the same

patch. However, this repair example is smaller. 39

3.5 Error Message Coverage (Depth): (a) The distribution of repair examples

shows that we generate multiple distinct examples for each error. (b)

Similarly, the distribution of patches shows that we generate multiple

distinct patches for each error. 48

3.6 Repair Example Sizes (a) The median LOC length of repair examples is

5. (b) The median token length is 4. These distributions tell us that

the generated repair examples are small, and by proxy, simple. Note:

Outliers are not shown. 50

3.7 After each task, participants rated the helpfulness of repair examples.

Participants rated examples as helpful (“Somewhat helpful” or above) in

5 out of 9 tasks. 54

3.8 This is C++ program T6. Participants rated the repair examples show

for this program as “Very helpful”. 55

3.9 This is C++ program T7. Participants rated the repair examples show

for this program as “Helpful”. 56

3.10 Time to Submission: Overall, participants submitted a solution faster

when shown repair examples; median of 48 secs compared to a median

of 64 secs. 58

4.1 This listing shows two Java methods. Both implement the BubbleSort

algorithm. (top) Sorts an array of integers. (bottom) Sorts an array of

strings. 70

-vii-

www.manaraa.com

4.2 (left) This is the simplified bag-of-words representation of the method

that sorts an array of integers using Bubble Sort. (right) This is the

simplified bag-of-words representation of the method that sorts an array

of Strings using Bubble Sort. Note: The words in common are shaded. . 71

4.3 The execution of Algorithm 11 illustrated on the following problem in-

stance: MINSET({a, b, e}, {{a, c}, {b, c, d}, {a, d, e}}). 75

4.4 The histogram of minset sizes tells us that minsets are small. Comparing

minset sizes with method sizes shows that minsets are also relatively

small. The minset ratio histogram confirms this. 78

4.5 Random Sample of 10, 000 Methods: (left) Proportion of Methods with

Minsets: There is a stark difference in that proportion between LEX and

LTT. (right) Proportion of Methods with Duplicates: LEX induces very

few duplicates compared to LTT. LTT maps almost three quarters of the

methods to the same set as another. It is too coarse, and does not model

methods well. 79

4.6 (left) As the lexicon grows from MIN1 to MIN4, the average size of the

threshed methods also grows. (right) As the lexicon grows, the average

minset size hardly changes. At least three quarters of the methods have

a minset smaller than 4. Even as the lexicon grows, the maximum minset

size is never more than 10. 84

4.7 (left) Yield: The yield clearly improves with each change. At MIN4, the

yield is 44.79%. (right) Proportion of Methods With Duplicates: Using this

proportion as a rough gauge of threshing precision, there is a substantial

improvement in threshing precision with each lexicon — fewer methods

have duplicates. MIN4 pushes that precision past 50%. 85

-viii-

www.manaraa.com

4.8 Multiplicity: (left) Like in Figure 4.6, as the lexicon grows, so does the

threshed method size. In this case, methods are much larger because

repetition is allowed. (right) The minset sizes, allowing repetition, are

evidently larger. However, on average, they are still small across all

lexicons. (To visualize both distributions, we omitted extreme outliers.1) 88

4.9 Multiplicity: (left) Yield: Multiplicity improves the yield of all lexicons.

The yield of MIN4 now exceeds 50%. (right) Proportion of Methods With

Duplicates: Using this proportion as a rough measure of threshing, mul-

tiplicity also improves the threshing precision of each lexicon. Less than

25% of the methods have duplicates using MIN4. (Note: Compare with

Figure 4.7.) . 89

4.10 Yield, the percentage of distinguishable methods, increases as the maxi-

mum method size filter is tuned down to 562. From there, the number of

methods and the number of threshable methods decreases substantially.

Thus, setting the filter at 562 seems appropriate. 91

4.11 This shows the minsets of nine methods (MIN4). L1-L3 are minsets that

have low minset ratios. M1-M3 have medium minset ratios. H1-H3

have high minset ratios. The minset elements are rich and reveal some

information about the behavior of their respective methods. 93

-ix-

www.manaraa.com

LIST OF TABLES

2.1 Responses to the survey question: “I use or have used KODETHON to do

coursework in the following courses.” . 19

2.2 Student Programming Experience by College. CAES = College of Agri-

cultural and Environmental Sciences, CBS = College of Biological Sci-

ences, CE = College of Engineering, CLS = College of Letters and Science 23

2.3 “I use KODETHON to.” Multiple choices were allowed. 23

2.4 Responses to the items in the Usefulness measure. 25

2.5 Responses to additional Usefulness items. 26

2.6 The top-10 responses to “What features of KODETHON do you find most

useful?” . 27

2.7 The top-10 categories of open-ended responses to “List the most positive

aspect(s) of KODETHON.” . 28

3.1 Error Message Coverage. 47

3.2 Errors with the most example fixes. 49

3.3 Errors with the most patches. 50

3.4 C++ Programs Used in Debugging Tasks. 52

3.5 Overview of Task Performance. 57

4.1 Corpus summary. 76

4.2 Method counts. 77

4.3 Lexicons. 78

4.4 Types of lexemes (or words) in the minsets we computed over the lexicon

LEX. 80

-x-

www.manaraa.com

ABSTRACT

Minimizing Technical Barriers to Learning Programming

Software is an integral part of our lives. It controls the cars we drive every day, the ships

we send into space, and even our toasters. It is everywhere and we can easily down-

load more. Software solves many real-world problems and satisfies many needs. Thus,

unsurprisingly, there is a rising demand for software engineers to maintain existing soft-

ware and to design and build new systems. Unfortunately, there is a scarcity of software

engineers. But thankfully, more and more people are opting or being encouraged to

pursue a Computer Science education, and we are seeing an explosion in enrollment

worldwide. At UC Davis, for example, an introductory programming course quadru-

pled in enrollment from about a hundred students to four hundred. Recently, official

enrollment at UC Berkeley’s introductory programming course was 1, 762. Massively

open online courses (MOOCs) like Coursera and Udacity regularly sign up thousands of

students for a single course.

Not surprisingly, however, not everyone who enrolls in CS courses succeeds. A study

in 2014 found that, on average, 33% of students fail. Often, these same students de-

cide to drop out instead. For example, Ireland reported that about a third of students

drop out of Computer Science degree programs. Undoubtedly, there are many factors

contributing to these issues. But perhaps, the most straightforward reason is that pro-

gramming is simply difficult and challenging. And with larger classes, students are

receiving less personalized instruction and intervention. Therefore, we need innovative

tools and approaches to help students learn to program.

In this dissertation, we focus on technical barriers to learning programming. We de-

fine technical barriers as those challenges that are faced by programmers of all levels

but are especially difficult to beginners. These technical barriers can cause students to

waste time, to become frustrated, and even to quit. This dissertation describes three

efforts addressing these technical barriers from different angles: simplifying the pro-

gramming environment, assisting with compilation errors, and exploring a syntax-free

-xi-

www.manaraa.com

programming paradigm.

Students often spend a considerable amount of time and effort installing and config-

uring programming tools and environments. This can frustrate, and distract them from

more important learning objectives, particularly in introductory programming courses.

A web integrated development environment (IDE) can serve as a low-threshold, ready-

to-use programming environment, and reduce the time and effort needed to start prac-

ticing programming. Moreover, the uniform execution environment can facilitate better

interactions between students and instructors.

We describe the design and deployment of KODETHON, a web IDE, at a large public

university. KODETHON can support multiple programming languages, multi-file projects,

and real-time collaboration. To date, more than 3,000 students have used KODETHON in

at least 15 different courses to write over 15 million lines of code. We studied student

adoption behavior and perceptions of KODETHON by analyzing server database and logs,

and by deploying a user survey. We found that about a third of participants perceive

KODETHON to be useful. We also found that students find “Web-based” and “No Instal-

lation Required” to be the two most useful features. We present lessons learned and

provide advice for educators and researchers considering introducing a web IDE as a

pedagogical tool.

Every programmer, from novices to professionals, makes compilation errors. Resolv-

ing compilation errors can be time-consuming, difficult, and frustrating. For decades,

error messages have been identified as a source of this difficulty. A promising approach

to help programmers is to augment error messages with compilation repair examples.

The challenge is how to obtain and present these repair examples.

We present COMPASSIST, a system that generates and refines repair examples. Based

on these repair examples, the system suggests possible patches to users when their

program fails to compile. We evaluated COMPASSIST on a mainstream C++ compiler, and

demonstrate that it can generate examples for more than half (867/1, 686) of compiler

errors. We also conducted a user study where participants found these synthetic repair

examples to be helpful in a majority (5/9) of tasks involving real-world C++ compiler

-xii-

www.manaraa.com

programs.

Lastly, we focus on programming language syntax. Natural language is robust against

noise. The meaning of many sentences survives the loss of words, sometimes many of

them. Some words in a sentence, however, cannot be lost without changing the mean-

ing of the sentence. We call these words “wheat” and the rest “chaff”. The word “not”

in the sentence “I do not like rain” is wheat and “do” is chaff. For human understanding

of the purpose and behavior of source code, we hypothesize that the same holds. To

quantify the extent to which we can separate code into “wheat” and “chaff”, we study

a large (100M LOC), diverse corpus of real-world projects in Java. Since methods rep-

resent natural, likely distinct units of code, we use the ∼9M Java methods in the corpus

to approximate a universe of “sentences.” We extract their wheat by computing the

function’s minimal distinguishing subset (MINSET). Our results confirm that functions

contain much chaff. On average, MINSETS have 1.56 words (none exceeds 6) and com-

prise 4% of their methods. Beyond its intrinsic scientific interest, our work offers the

first quantitative evidence for recent promising work on keyword-based programming

and insight into how to develop a powerful, alternative programming model.

-xiii-

www.manaraa.com

ACKNOWLEDGMENTS

First, I would like to thank my parents for their love and support. Thirty years ago, they

left their home immigrated to the United States to give my siblings and me a chance at

a better education. They taught me much including kindness and the joy of learning.

I would like to thank my advisor Professor Zhendong Su for his support. Zhen-

dong has been an amazing role model to me because he is kind, thoughtful, and hard-

working. I thank him for believing in me, and for guiding me for many years. I am

going to miss our weekly meetings where we dreamt big together.

I also thank Prof. Earl Barr for mentoring me as an undergraduate student while he

was a Postdoctoral Researcher at UC Davis and into the first years of graduate school

although he was already on the other side of the Atlantic working at UCL.

I also want to thank all of the professors who mentored and advised me throughout

the years: Prof. Prem Devanbu, Prof. Vladimir Filkov, Prof. Cindy Rubio-Gonzalez, Prof.

Philip Rogaway, Prof. Patrice Koehl, Prof. Amin Alipour. Every one taught me many

interesting lessons on all sorts of subjects that I hope to carry with me. They were

always available and enthusiastic to discuss my projects and ideas.

I also want to thank all of the instructors who allowed me to demonstrate Kode-

thon to their students: Sean Davis, Matthew Butner, Rob Gyselt, and Prof. Dave Doty.

A big part of this dissertation was made possible thanks to their enthusiasm for new

technologies.

I also want to thank all of the co-authors of the chapters in this disseration: Dong

Qiu, You Zhou, Michael Yen, Mathew Le, Chengnian Sun, and Nima Johari.

I would like to thank all of the labmates who came and went throughout the years.

I enjoyed our daily coffee runs, our lively discussions, and the encouragement we gave

each other: Dr. Qirun Zhang, Dr. Mehrdad Afshari, Dr. Liang Xu, Dr. Fangqi Sun, Dr. Vu

Le, Dr. Andreas Saebjornsen, Dr. Tianxiao Gu, Dr. Zhaopeng Tu, Dr. Ke Wang.

Last but not least, I would like to thank my wife Rocio for her daily support and en-

couragement. For many years, she has been the biggest cheerleader in my life. Thanks

to her, I am able to focus on research.

-xiv-

www.manaraa.com

Chapter 1

Introduction

Over the last several decades, we have come to realize that the right software can

solve many important real-world problems and help us achieve our grandest dreams.

We write software to guide our spaceships into outer space and to explore the solar

system. 1 We write software to assist us in driving our cars more safely and efficiently.

As we steer and press pedals, software is invisibly and continuously optimizing fuel

consumption, minimizing emissions, maximizing traction, and avoiding collisions. 2 We

build a variety of web and mobile applications to connect with family and friends in

ways that may have seemed impossible only a century ago. We even put software in

toasters to toast bread to perfection and notify us on our smartphones when our toast

is ready. 3 Indeed, whenever many of us face a new problem, one of the first questions

we ask is “Is there an app for that?”. If there isn’t, we write it. In this manner, software

has rapidly become an integral part of our lives.

Correspondingly, there is high demand for software developers who can build new

software systems and maintain existing ones. The U.S. Bureau of Labor Statistics esti-

mates that there were 1,256,200 Software Developer jobs in 2016 in the US [Bureau of

Labor Statistics, 2018, Adams, 2016]. The number of software developer jobs is ex-

pected to grow by 302,500 (24%) from 2016 to 2026, which is nearly thirty thousand

new jobs every year, “much faster than the average for all occupations”. More impor-

1https://software.nasa.gov/
2https://www.embedded.com/design/operating-systems/4442406/Software-in-cars
3https://www.engadget.com/2017/01/04/griffin-connects-your-toast-to-your-phone/

1

https://software.nasa.gov/
https://www.embedded.com/design/operating-systems/4442406/Software-in-cars

www.manaraa.com

tantly, by most reports, there is a shortage of software developers to fill the current

openings [Torres, 2018, Society, 2018]. In such a job market, software developers en-

joy a low unemployment rate, 1.9% in 2017 compared to 4.1% overall [Torres, 2018].

The average salary is also much higher than in most other occupations, ranging from

$92,592 to $104,425, depending on the report [DataUSA, 2018, Bureau of Labor Statis-

tics, 2018, Society, 2018]. Pursuing a career in Computer Science seems to be a safe

choice for a lot of people [Adams, 2014] .

Thankfully, due in part to this attractive job market and to a global movement led by

organizations like Code.org4 and the previous White House administration [Mechaber,

2014], more people are enrolling in Computer Science courses [Soper, 2014, Lazowska

et al., 2014]. Many people choose to enroll in traditional four-year universities caus-

ing typical introductory class sizes to increase. At University of California, Davis, for

example, an introductory programming course quadrupled in enrollment from about

a hundred students to four hundred in the last several years. Recently, official enroll-

ment at University of California, Berkeley’s introductory programming course reached

1, 762 [Kim, 2017]. Many students have to watch the lecture from another room on a

projector screen. Millions of other people are enrolling in massively open online courses

(MOOCs) offered by companies like Coursera and Udacity [Shah, 2014]. There is so

much demand that dozens of coding boot camps have sprung up all over the world

offering short-term computer science education. 5.

As a society, we want and need all of these students to succeed; unfortunately, many

do not. For example, in a 2014 study of an introductory programming course (called

CS1) taught in 15 different countries across 51 different institutions, researchers found

that only about 67% students pass the course, which means that about 33% fail or

dropout [Watson and Li, 2014]. A study reported a year later a similar pass rate (77%)

at the University of Toronto [Horton and Craig, 2015]. Worse, students can fail to

progress and drop out of CS programs entirely [Pappas et al., 2016]. In Europe, for

example, a report estimated that 19% of students drop out [Hüsing et al., 2013] of

4https://code.org/
5https://www.coursereport.com/reports/2017-coding-bootcamp-market-size-research

2

https://code.org/
https://www.coursereport.com/reports/2017-coding-bootcamp-market-size-research

www.manaraa.com

Information and Communication Technology programs. In some countries, the dropout

rate can be as high as 32% [Kori et al., 2015].

There are many more reasons why computer science students struggle. One popu-

lar explanation is that learning to program is inherently difficult, and, perhaps, one of

the most challenging human endeavors. It involves understanding and solving prob-

lems precisely, often down to individual bits. It requires working knowledge of data

structures and algorithms. It demands one to manage the ever-growing complexity of

function/module interactions. It requires breadth and depth of knowledge; writing a

video game is different from writing a spreadsheet program. As Dijkstra put it:

“The art of programming is the art of organizing complexity, of mastering

multitude and avoiding its bastard chaos as effectively as possible.”

Numerous socioeconomic factors also affect a student’s preparedness, performance,

and eventual success [Pappas et al., 2016]. Historically, poorer children have generally

had less access to computers and to schools that taught basic computer science skills.

Large class sizes can also negatively impact students. At the current levels of en-

rollment, in both, traditional university courses and MOOCs, effective instruction and

learning becomes extremely challenging. Students lose opportunities to ask questions

during class. There simply is not enough time during lecture to answer the questions

of hundreds of students or, in the case of MOOCs, thousands to even hundreds of thou-

sands. Students also lose opportunities to ask for help during instructor and teaching

assistant office hours. Lines for office hours become longer and longer. Some of their

questions may never be brought up and thus answered. On the other hand, instructors

and teaching assistants, due to more students, have to spend more of their time con-

ducting tedious activities like grading instead of providing better feedback to individual

students. In general, students miss out on personalized help.

We need innovative tools and approaches to help students learn to program. In

this dissertation, we focus on technical barriers to learning programming. We define

technical barriers to be those difficulties related to programming languages and tools

that tend to cause students to waste time and to become frustrated. Technical barriers

3

www.manaraa.com

can be faced by programmers of all levels but are especially difficult to beginners. In this

dissertation, we identify technical barriers in developer tools, in compiler feedback, and

in language syntax. We propose approaches to minimize these barriers to help students

learn to program.

Developer Tools: Students often spend a considerable amount of time and effort

installing and configuring programming tools and environments. This can frustrate,

and distract them from more important learning objectives, particularly in introductory

programming courses. A web integrated development environment (IDE) can serve as a

low-threshold, ready-to-use programming environment, and reduce the time and effort

needed to start practicing programming. Moreover, the uniform execution environment

can facilitate better interactions between students and instructors.

We describe the design and deployment of KODETHON, a web IDE, at a large public

university. KODETHON can support multiple programming languages, multi-file projects,

and real-time collaboration. To date, more than 3,000 students have used KODETHON in

at least 15 different courses to write over 15 million lines of code. We studied student

adoption behavior and perceptions of KODETHON by analyzing server database and logs,

and by deploying a user survey. We found that about a third of participants perceive

KODETHON to be useful. We also found that students find “Web-based” and “No Instal-

lation Required” to be the two most useful features. We present lessons learned and

provide advice for educators and researchers considering introducing a web IDE as a

pedagogical tool.

Compiler Feedback: Every programmer, from novices to professionals, makes com-

pilation errors. Resolving compilation errors can be time-consuming, difficult, and frus-

trating. For decades, error messages have been identified as a source of this difficulty.

A promising approach to help programmers is to augment error messages with compila-

tion repair examples. The challenge is how to obtain and present these repair examples.

We present COMPASSIST, a system that generates and refines repair examples. Based

on these repair examples, the system suggests possible patches to users when their

program fails to compile. We evaluated COMPASSIST on a mainstream C++ compiler, and

4

www.manaraa.com

demonstrate that it can generate examples for more than half (867/1, 686) of compiler

errors. We also conducted a user study where participants found this synthetic repair

examples to be helpful in a majority (5/9) of tasks involving real-world C++ compiler

programs.

Language Syntax Lastly, we focus on programming language syntax. Natural lan-

guage is robust against noise. The meaning of many sentences survives the loss of

words, sometimes many of them. Some words in a sentence, however, cannot be lost

without changing the meaning of the sentence. We call these words “wheat” and the

rest “chaff”. The word “not” in the sentence “I do not like rain” is wheat and “do” is

chaff. For human understanding of the purpose and behavior of source code, we hy-

pothesize that the same holds. To quantify the extent to which we can separate code

into “wheat” and “chaff”, we study a large (100M LOC), diverse corpus of real-world

projects in Java. Since methods represent natural, likely distinct units of code, we use

the ∼9M Java methods in the corpus to approximate a universe of “sentences.” We ex-

tract their wheat by computing the function’s minimal distinguishing subset (MINSET).

Our results confirm that functions contain much chaff. On average, MINSETS have 1.56

words (none exceeds 6) and comprise 4% of their methods. Beyond its intrinsic scien-

tific interest, our work offers the first quantitative evidence for recent promising work

on keyword-based programming and insight into how to develop a powerful, alternative

programming model.

Contributions: In this dissertation, we make the following contributions:

• We present Kodethon, a web-based integrated development environment used by

students in Computer Science and Linguistics courses at University of California,

Davis. Students can program in Python, C, C++, Java, Lisp, Prolog, and other

programming languages. Programs are stored in the cloud but can be accessed

from a variety devices including tablets and smartphones. The built-in editor pro-

vides convenient features like syntax highlighting and auto completion. To execute

Unix commands, e.g., ssh and scp, students can use a new easy-to-use shell or a

full Unix terminal — right within the browser. Kodethon also supports real-time

5

www.manaraa.com

collaboration which facilitates pair-programming and live teaching assistance.

• We present the first large scale study of deployment and adoption of a web IDE at a

large public university. We show that about a third of students adopted Kodethon

to write their programming assignments. We also show that about a third find

Kodethon useful.

• We present FUZZ-AND-REDUCE, a novel technique to synthesize compilation repair

examples from a seed collection of compilable programs. Using this technique, we

have been able to synthesize compilation repair examples for 51% of all Clang++

C++ compilation errors.

• We present COMPASSIST, a novel prototype tool that suggest repairs for compi-

lation errors ranking patches that are more likely to repair the error first and

showing examples that are most similar to the given uncompilable program.

• We show that synthetic compilation repair examples can be helpful to program-

mers seeking help in resolving compiler errors.

• We introduce the concept of lexical distinguishability of source code, and formulate

the Wheat and Chaff Hypothesis, which states that units of code consists of 1)

“wheat”, important lexical features that preserve meaning, and “chaff”, and 2)

the “wheat” is small compared to “chaff”.

• We formalize the problem of separating the wheat from the chaff in source code as

a new NP-Complete problem, which we call The MINSET Problem. We prove that

this is an NP-Complete problem by producing a polynomial-time reduction from

the Hitting Set problem.

• Through an empirical study of over 100M Java LOC, we show that source code

can be separated into wheat and chaff. In other words, we show that it is lexi-

cally distinguishable. We specifically show that as much as 96% of source code is

potentially chaff. We present an exploration over various lexicons that shows that

6

www.manaraa.com

only a few lexical element suffice to distinguish Java methods from one another

with a natural, minimal lexicon.

Thesis Structure: We structure the remainder of the dissertation as follows. Chap-

ter 2 discusses our approach in building a low-threshold web programming environ-

ment called Kodethon and our large scale study at a large public university. Chapter 3

presents our approach for helping students with compilation errors through our novel

FUZZ-AND-REDUCE technique for synthesizing compilation errors and our prototype tool

COMPASSIST. Chapter 4 presents our first steps towards a minimal syntax-free keyword-

programming paradigm. Chapter 5 summarizes and presents our conclusions.

7

www.manaraa.com

Chapter 2

Student Adoption and Perceptions of a
Web Integrated Development
Environment

Students often spend a considerable amount of time and effort installing and config-

uring programming tools and environments. This can frustrate, and distract them

from more important learning objectives, particularly in introductory programming

courses. A web-based integrated development environment (web IDE) can serve as a

low-threshold, ready-to-use programming environment, and reduce the time and effort

needed to start practicing programming.

We report our experience of developing and deploying a web IDE at a large public

university in North America. Over the last three years, it has been used by thousands

of students in diverse Computer Science courses as an optional programming tool. We

designed and conducted a survey to understand students’ usage of and perceptions

toward the web IDE and its features. We also explored potential correlations between

student demographic and behavioral traits and adoption of the web IDE. In this chapter,

we also describe broader lessons for educators resulting from interactions with students

and instructors and supported by our findings.

8

www.manaraa.com

2.1 Introduction

Programming involves several steps such as coding, compiling, linking, testing and de-

bugging [Kelleher and Pausch, 2005]. Each step requires proper installation and con-

figuration of the corresponding tools and environments. Integrated development en-

vironments (IDEs) attempt to integrate and present all tools needed for programming

in a unified interface, but still they require users to configure the system and install

individual tools. For example, an IDE for Python programming language will provide

syntax highlighting for Python programs, but users may still need to install the Python

interpreters and configure the IDE to use the right installation (e.g. python 2.7 or 3.6).

Installing and configuring programming tools and environments can be a frustrating

and error-prone task, especially for a student that is learning programming, and may

also distract the student from the primary learning objectives [Jenkins et al., 2010]. For

example, at University of California, Davis, there is an upper division “Programming

Languages” course where students learn programming language theory and concepts

by studying different languages, namely C++, Java, Lisp, and Prolog. Since the course is

only ten weeks long (due to the quarter system), the assigned programming projects are

limited in length and difficulty. Nonetheless, students have reported spending a signif-

icant portion of their time and effort (hours, and even days) installing and configuring

programming tools for each new assignment.

A web-based integrated development environment can provide a uniform, simple

programming interface and require no installation or configurations on the local ma-

chine [Goldman et al., 2011, van Deursen et al., 2010, Jenkins et al., 2010]. A web IDE

is particularly desirable in classrooms because (1) it can reduce time for installation,

configuration and troubleshooting of tools and environments, allowing students and in-

structors to focus on the primary learning objectives, and (2) it can provide a unified,

reproducible execution environment, which can improve communicating programming

problems between students and teaching staff [Jenkins et al., 2010].

We developed and deployed KODETHON, a web IDE at University of California, Davis.

We have operated and maintained KODETHON for more than three years. KODETHON

9

www.manaraa.com

supports all of the programming languages used to teach courses at our university, in-

cluding Python, C, C++, Java, Lisp, and Prolog. Its built-in editor provides convenient

features like syntax highlighting and auto-completion. Student can also use an easy-

to-use shell or a full Unix terminal—within the browser—to execute Unix commands,

such as, ssh and scp. KODETHON also supports real-time collaboration which facilitates

pair-programming and live teaching assistance.

In this chapter, we discuss adoption of the web IDE by students, and their perceptions

toward it. To date KODETHON has been used by more than 3,000 students in 15 courses

as an optional tool. Thus far, students have used KODETHON to write more than 15

million lines of code. We analyze survey responses from 140 students who took a course

recently to understand student usage and perceptions of KODETHON.

We found that 48% of survey participants use the web IDE often. About a third

of participants opted to use the web IDE to write their programs, and, coincidentally,

about a third perceived the web IDE to be useful. Students ranked “Web-based” and “No

Installation Required” as the two most useful features – consistent with the premise of

web IDEs as a low-threshold, ready-to-use programming environment. We found that

class standing has a strong correlation with adopting the web IDE, as novice students

are more likely to adopt the system. We found students that use the web IDE more often

tend to not use the alternative stand-alone IDEs or editors. However, we did not find

strong correlations between adoption of the web IDE and adoption of authoring web

applications like Google Docs.

The main contributions of this chapter are:

• We describe KODETHON, a web IDE that has had widespread use across diverse

university CS courses, and its deployment (Section 2.3).

• We designed and conducted a user survey of student usage and perceptions of the

IDE, and analyzed the results (Section 2.4).

• We explored correlations between adoption of a web IDE and student characteris-

tics (Section 2.5).

10

www.manaraa.com

• We discuss broader lessons for CS educators and researchers regarding web IDEs

(Section 2.6).

2.2 Related Work

Web IDEs for classrooms: Perhaps, the work most related to ours is a recent study by

Benotti et al. that describes a web IDE to support teaching functional programming in

Haskell, and evaluated the students’ attitude toward it [Benotti et al., 2018]. In their

study, students strongly agreed that the web IDE makes them more productive, and a

better Haskell programmer. They surveyed 86 students in two institutions. Barr et al.

developed CodeLab as a Web IDE for introductory programming courses. They observed

that the average grade of students increased moderately after adopting CodeLab (0.2

points in a 4-scale grading) [Barr and Trytten, 2016]. Note that in these studies students

were required to use the web IDE for programming while we did not requires students

to use KODETHON.

There are a number of web IDEs for classrooms. For example, PythonTutor is a

popular Python tutoring system that in addition to execution of single-file programs,

visualizes the heap of programs [Guo, 2013] . Helminen et al. developed a web IDE for

Python programming and ran a user study [Helminen et al., 2013]. In their study, more

than 40% of students reported that they used the system frequently, and a large portion

of students indicated that the web IDE is useful and should be used in future course

offerings. The major complaints were that students were used to other editors or IDE,

and the system was slow.

Pedagogical stand-alone IDEs: While sophisticated features such as build, test, or

integration of programs in professional IDEs help professional developers, they can be

barriers in educational environments, especially in early programming classes where

most students have little or no programming experience. Rich, sophisticated features

can be intimidating to students, and distract them from the main learning objectives.

Pedagogical IDEs attempt to address these barriers by abstracting and hiding irrelevant

features of professional IDEs. For example, to teach object-oriented concepts, such as

11

www.manaraa.com

classes and relationships between them, BlueJ IDE provides visual tools to design a class

and define the relationships between a class and other classes [Kolling et al., 2003].

BlueJ has been extended to be used in data structure courses [Paterson et al., 2005],

to accommodate collaboration [Fisker et al., 2008], to teach design patterns [Paterson

and Haddow, 2007], and in programming embedded systems [Altadmri et al., 2015]. A

survey of computing education research community in 2006 shows that more than 25%

respondents use BlueJ IDE in introductory courses [Schulte and Bennedsen, 2006].

Some pedagogical IDEs target particular needs of students. For example, Jenuity

tools provides an efficient Java IDE that can run on outdated machines for students

that do not have powerful computers [van Tonder et al., 2008]. Boyd et al. [Boyd and

Allevato, 2012] developed an Eclipse plug-in to address the problem of configuration of

assignment files on students’ machines. Their plug-in directly downloads required files

for assignments and configures the environment. Brune et al. found that, in web design

courses, proper configuration of web servers and databases consumes a large portion of

students’ time [Brune et al., 2014]. Therefore, they created an IDE, where they wrap

the functionality of a web server with a single Java class, therefore students can treat

the execution of a web server as the execution of a simple Java program.

Feedback in IDEs: In addition to editing and building programs, IDEs can also

provide hints to assist students to improve their programming skills. For example,

ASIDE [Zhu et al., 2013], and ESIDE [Whitney et al., 2015] nudges students to adopt

secure programming practices, or DevEventTracker [Kazerouni et al., 2017] evaluates

how students adhere to principle of incremental programming and how much they pro-

crastinate. Some IDEs also track students’ activities to identify at-risk students [Munson,

2017, Dyke, 2011, Ford and Staley, 2016].

Web IDEs in MOOCs: With the advent of MOOC and large scale learning, web

IDEs are becoming commonplace. For example, Khan Academy provides a simple web

IDE in their programming lessons [Academy, 2017]. Most introductory programming

courses on edX are also accompanied by a webIDE. Some web IDEs can offer automated

feedback to students to fix the errors [Wang et al., 2018, Wang et al., 2017a]. Web-based

12

www.manaraa.com

Figure 2.1. KODETHON User Interface: File navigator, editor, and CDE Shell.

development environments also serve as a platform for massive collection of data from

users actions. The data can be used to develop various predictive models. For example,

Wang et al. use data collected from EdX’s web IDE to predict the success of students in

arriving at a correct code, given the intermediate steps they take [Wang et al., 2017b].

13

www.manaraa.com

2.3 KODETHON Description and Adoption

KODETHON is a web integrated development environment—it requires no installation—

and users can immediately start writing, executing, and storing programs. It is de-

signed to be easy-to-use by university students, and to be useful in completing their

coursework. To scale to classes of hundreds of students, we designed KODETHON as a

distributed system that can scale horizontally. However, building a web IDE that scales

to many users, has high availability, and fast response time is challenging task. We first

describe the user interface features. Next, we describe how we addressed several tech-

nical challenges. Namely, how to support multiple programming languages? How to

support multi-file programs?

2.3.1 Main Features

Figure 2.1 shows the main user interface which consists of an editor, a file navigator, a

CDE shell, and a smart run button.

1. Editor: The editor is an instance of the open-source ACE editor which provides syn-

tax highlighting for multiple programming languages and basic auto- completion.

Users can personalize the editor by changing the theme, font, and indentation

settings. ACE even supports editing in VIM mode which some users find to be

a more efficient mode of editing. We added support to open multiple files and

switch between them using tabs.

2. File Navigator: Users can create files and organize files in folders. They also can

rename, move, copy, upload, and download files. This allows students to access

their files from anywhere and from any device.

3. CDE Shell: This is KODETHON-specific shell that allows users to run common Unix

commands like ls and cd but also allows users to run KODETHON-specific com-

mands like terminal which opens a standard Unix terminal for more advanced

users. The user can also compile and run programs using this shell.

4. Smart Run Button: A common point of initial confusion for students is: “How

14

www.manaraa.com

do I run this program?” KODETHON employs a best-effort strategy for executing

programs. For example, if the file end in .c, it will search for a Makefile and if it

finds one, then it runs make. Otherwise, it will compile the current file, and run the

resulting a.out program. Another example, if the file ends in .l, it will interpret

it using clisp. In our experience, this helps students interact with programs much

quicker. Users can customize build and run settings.

KODETHON also provides:

• Multi-language Support: It provides over a dozen programming environments, dis-

tinct sets of compilers, interpreters, and programming tools. For example, to pro-

gram in Lisp, a user simply selects the lisp environment which includes the clisp

interpreter. The environments are defined as Docker images. All user commands

are executed in Docker containers. For scalability and performance, we limit re-

sources per user such as disk space, RAM, and CPU usage.

• Real-time Collaboration: By default, a user starts with an always-private project. To

collaborate with others, he/she must create a shared project and add collaborators.

All collaborators will have access to that project. KODETHON allows users to set

read/write/execute permissions for collaborators (think Linux groups), and for

the public. We have observed that some users create a project for each homework

while some create a project for the entire course. In a shared project, two or more

people can edit the same file at the same time. We employ Firepad1 to provide

this functionality. But we also added support for File History, real- time chat, and

comments.

• Learning management system: Instructors create programming assignments. Stu-

dents upload submissions to KODETHON. The submissions are automatically graded.

Students receive feedback on their submissions by running the provided test suite.

15

www.manaraa.com

Figure 2.2. KODETHON Architecture: The user interacts with an AngularJS frontend.
The frontend communicates with a master server. The master server handles user
requests and orchestrates worker nodes in the cluster.

2.3.2 Architecture

KODETHON is a designed as distributed system. Figure 2.2 shows an overview of the

KODETHON architecture. The user interacts with the front-end (Figure 2.1), which is an

AngularJS application. The front-end sends HTTP request to the master server, which is

a Ruby-on-Rails server application. The master routes user requests to the slave servers.

The cluster consists of one or more slave servers, which store user files and execute user

programs. The master reads and updates the database. The master is responsible for

monitoring and orchestrating the entire cluster.

Each user is assigned to a slave server and all of his/her files are created and stored

as real files and directories in this server. By assigning a user to a specific server, we can

provide high availability of the user’s files. In other words, the user does not need to

1https://firepad.io/

16

www.manaraa.com

wait for files to be downloaded or moved around. When the user logs in, his complete

file tree is usually retrieved and displayed in less than 500 milliseconds, even if the user

has tens of thousands of files.

When a user opens/reads a file, the front-end requests it from the master server

which in turn must first queries the database to determine the assigned server. Then, the

master requests the file content from the slave server directly. The slave server reads the

file, returns the content to the master server, as part of HTTP response, which returns

it to the user interface. The user interface stores the received file content in a local

buffer of the user’s browser. All of this is usually completed in under 300 milliseconds

for files of typical size, under 100KB. Of course, the actual time depends on file size and

network speed. Since the user may edit the file in another browser tab or device, the

front-end occasionally polls for new file contents. If the file on the server is different

from the one stored in the active buffer, the user is asked which one he wants to keep.

Writing/editing a file works similarly. When the user edits and saves, the front-end

sends the new file content stored in the local buffer to the master server which forwards

it to the user’s assigned server. The slave server replaces the old file contents with the

new content.

Since students make mistakes, we also implemented a File History feature which

takes a snapshots of a file. This allows user to undo changes without having to rely on

any complicated version control system, like git or svn. Internally, we also replicate

user files to backup and take snapshots; the details are beyond the scope of this chapter.

Docker provides several benefits. First, it provides security since all user actions

are contained in Linux containers. Second, Linux containers allow for faster execution

and response time since they have lower overhead than virtual machines. Third, it

provides a easy and quick method to program in multiple programming languages. For

example, to switch from Lisp to Prolog, a student simply needs to switch to the provided

Prolog environment. No installation or configuration is required. Fourth, it provides a

uniform execution environment. This means execution will be consistent in the same

environment. This can help students collaborate, and can make it easier for teaching

17

www.manaraa.com

assistants and instructors to help students debug.

2.3.3 Deployment and Adoption

To deploy KODETHON to students, we asked instructors who were teaching programming-

intensive courses for the opportunity to give a live demonstration of KODETHON during

one of their lectures. We gave our first live demo to students taking “Introduction to

Programming”, which uses Python programming language, in the Spring 2015. Since

then, we have given more than ten live demos. Professors usually allot 5 to 15 minutes

at the beginning of a lecture in the first or second week of the academic quarter. We

usually demonstrate 1) how to create and edit programs, 2) how to execute programs

with the smart button, 3) how to use the CDE shell, 4) how to collaborate in real-time,

and 5) how to access the more advanced but traditional Unix terminal. The program-

ming language we used in the demo depends on the main programming language of

the class. For a class like “Programming Languages”, where students have to code in

Java, Lisp, and Prolog, we emphasized the ease with which students can switch to and

between the appropriate programming environments.

With each new wave of users, we sought and received user feedback. Students pro-

vided feedback in-person, on class forums (e.g., Piazza), indirectly to teaching assistants

and professors, and via email. Based on this feedback, we found and fixed bugs, and

added new features.

To date, more than 3, 000 students have signed up to use KODETHON in at least 15

different courses at University of California, Davis. Table 2.1 lists the courses where

students have reported using KODETHON, where we have given live demonstrations,

and where we distributed our user survey (Section 2.4). We gave live demonstrations

in lower division programming courses, and upper division “Programming Languages” –

where students are expected to program in Java, Lisp, and Prolog in a ten-week quarter.

Student also reported using KODETHON in courses that we never gave demos too, e.g.,

“Software Engineering”, but several students reported using it there. which indicates

that KODETHON has been useful across our CS curriculum.

Figure 2.3 shows how many users have signed up each month. The spikes corre-

18

www.manaraa.com

Table 2.1. Responses to the survey question: “I use or have used KODETHON to do
coursework in the following courses.”

Title (Intervention(s)) Programming Language(s)

1 Introduction to Programming (LD) Python

2 Introduction to Programming (LD) C

3 Software Development and Object-Oriented Pro-

gramming (LD, S)

C++, Rust

4 Computer Organization and Machine-Dependent

Programming (LD, S)

Assembly, C++

5 Data Structures and Programming (LD) C, C++

6 Theory of Computation N/A

7 Algorithm Design & Analysis C, C++

8 Probability and Statistical Modeling for Computer

Science

Python, R

9 Programming Languages (LD, S) Java, Lisp, Prolog

10 Scripting Languages and Their Applications Python, R

11 Parallel Architecture C

12 Software Engineering Varies

13 Web Programming Javascript, HTML, CSS

14 Introduction to Artificial Intelligence Varies

15 Computer Graphics Varies

LD = Live Demo, S = Survey

19

www.manaraa.com

Figure 2.3. User sign up history. As of April 2018, 3, 041 users have signed up to use
KODETHON.

Figure 2.4. The lines of code students have written using KODETHON by programming
language. This chart shows the top-10 languages and Lisp which is ranked 25 but is
teaching language used at University of California, Davis.

spond to the month we gave live demonstrations to classes. The magnitude of the spike

depends on the size of the class. The largest spike occurred during January 2018 which

is when we introduced the LMS feature and the professors asked students to submit

their assignments via KODETHON.

To measure how much code students have using KODETHON to write code, we ran

20

www.manaraa.com

cloc 2 over 7, 643 private and public projects to count the number of lines of codes in

their file directories. To date, students have used KODETHON to write over 15.1 million

lines of code. This is an under-approximation in that we do not count all of the inter-

mediate code students wrote and delete/overwrote. The top-5 languages were C++

(4.5M), C (2.5M), JavaScript (2.2M), Java (1.4M), and C/C++ Header (1.2M). C++

and C are used in large classes of about 300 students where students build projects that

are hundreds of lines long. This is an over-approximation in that we count code not

authored by students, like downloaded code.

2.4 User Survey

We conducted a multi-year, multi-course empirical study at University of California,

Davis. The first phase began with the development of our main apparatus, KODETHON,

in the summer of 2014, prior to the 2014-15 academic year. The second phase began

with the deployment of the first prototype to students in an introductory programming

course later that academic year, in spring 2015. The third phase began with the design

and deployment of our first formal user survey in the academic year 2017-18. We

performed quantitative analysis of student self-reported perceptions of KODETHON.

We developed a questionnaire consisting of 40 closed and open-ended questions,

and scale items. Participants took 10 minutes, on average, to answer it completely.

We asked about demographics, education, programming background [Siegmund et al.,

2014], and general KODETHON usage. We also asked students about their perceptions

of KODETHON using the measures defined in the USE Questionnaire [Lund, 2001]. Each

items was scored on a 5-point Likert scale ranging from Strongly Disagree to Strongly

Agree. We asked students perceptions about the impact of KODETHON in satisfying their

learning objectives and their future career (Table 2.5). To learn about students’ digital

habits and their potential relationship with adoption of KODETHON, we asked students

two questions: (1) “How often do you use Google Docs or Office 3653?” , and (2) How

often do you use stand-alone editors and IDEs such as Sublime, Atom, and Eclipse?

2https://github.com/AlDanial/cloc
3 Google applications and Office 356 are freely available to students.

21

https://github.com/AlDanial/cloc

www.manaraa.com

Figure 2.5. Ethnicity Distribution

We recruited participants by posting in Piazza class forums for two ongoing courses,

and by emailing students from a third course from the previous academic quarter (Fall

2017) (see Table 2.1). We offered participants an entry in a drawing for ten $20 Ama-

zon gift cards. Based on size of the classes, we estimate that we reached out to approxi-

mately 850 students in total from which 140 students chose to participate in our survey.

The demographics of our participants were:

• Gender: Male (87), Female (51), Not identified (2).

• Ethnicity: Asian (90), White (35), Other (17), American Indian or Alaska Native

(2), African American (1), Native Hawaiian or Pacific Islander (1).

• College: Letters and Science (91), Engineering (38), Agricultural and Environ-

mental Sciences (8), Biological Sciences (2), Other (1).

• University Standing: Freshman (39), Sophomore (40), Junior (38), Senior (23).

• Years of Programming Experience: 0-1 (32), 1-2 (48), 2-3 (27), 3-4 (16), 4-8 (15),

8 or more (2).

Figure 2.5 shows the distribution of ethnicity in the our survey responses. Table 2.2

shows the distribution of college and status. Most participants were from College of

Engineering (CE) and College of Letters and Science (CLS) because they host computer

engineering, and computer science majors respectively.

2.5 Results

We were interested in gaining insights into student adoption, perceptions, and charac-

teristics of adopters. In summary, we found that 48% of survey participants use KODE-

THON often. About a third, 33%, find it useful. And what they find most useful about

22

www.manaraa.com

Table 2.2. Student Programming Experience by College. CAES = College of Agricul-
tural and Environmental Sciences, CBS = College of Biological Sciences, CE = College
of Engineering, CLS = College of Letters and Science

Programming Experience CAES CBS CE CLS Other

0 to 1 years 5 1 6 20 0

1 to 2 years 2 0 13 32 1

2 to 3 years 0 1 9 16 0

3 to 4 years 0 0 6 9 0

4 to 8 years 1 0 1 12 0

8 or more years 0 0 1 1 0

Table 2.3. “I use KODETHON to.” Multiple choices were allowed.

Activity Participants ↓ Percentage of Participants ↓

Submit Assignments 117 84%

Test Programs 63 45%

Write Programs 46 33%

Collaborate 36 26%

Share Programs 18 13%

Other 1 1%

KODETHON is that it is a low-threshold, ready-to-use programming environment. We

also discovered that the likelihood of adoption decreases with university standing.

2.5.1 Usage

Almost half of survey participants, 48%, reported using KODETHON often: Very Often

(26, 19%), Often (41, 29%), Sometimes (23, 16%), Rarely (50, 36%), and Never (0,

0%). Table 2.3 shows that a large majority of participants, 83.6%, use KODETHON to

submit assignments. It also shows that about a third of participants, 33%, use KODE-

THON to write their programs. This is consistent with our expectation that although not

all students will opt to use KODETHON, a significant proportion will elect to use it. This

23

www.manaraa.com

is also consistent with our direct observations from previous courses where we observed

about a third of all students opting to use KODETHON to complete the programming as-

signments. Most students tend to use the primary editor or IDE recommended by the

instructor, for example, CLion or Eclipse.

Participants reported using KODETHON on a variety of devices. A great majority

(95%) reported using KODETHON on their personal laptops. Interestingly, 8% use KODE-

THON on campus desktops. Indeed, we have directly observed students using KODE-

THON on campus desktops provided by the CS department which is interesting because

those desktops already have ready-to-use programming environments. We hypothesize

students find it more convenient to store their files on KODETHON where they can access

their files from other devices. A large portion, almost half, of students used KODETHON

in Windows. Students reported negligible use on other devices, i.e., smart phones, ta-

bles, and other machines. Anecdotally, we have observed one student in complete all

programming assignments for “Programming Languages” using only KODETHON on an

iPad.

2.5.2 Perceptions

About a third of participants, 32%, perceived KODETHON to be useful. To measure

this attitude, we used the Usefulness measure defined by Lund in the USE question-

naire [Lund, 2001]. We summarize the responses in Table 2.4. Considering all items,

out of 1, 082 responses, 32% (348) agreed that KODETHON is useful, 30% (325) were

neutral, and 38% (409) disagreed. One of the most interesting items was the direct

statement, “It is useful.”. 55% of participants agreed. We conjecture that participants

find different aspects of KODETHON useful and they converge under this broad state-

ment. Another interesting item is “It does everything I would expect it to do.” to which

only 30% of participants agreed. This tells us that although we built many features

into KODETHON, students still expect more from a web IDE. In future work, we plan to

investigate what else students expect KODETHON to do.

We developed additional usefulness items to get a sense of students perceptions

about KODETHON’s usefulness beyond the classroom. Table 2.5 summarizes the re-

24

www.manaraa.com

Table 2.4. Responses to the items in the Usefulness measure.

Item SA A N D SD Count

1 It helps me be more effective. 5% 27% 33% 20% 15% 134

2 It helps me be more productive. 5% 23% 30% 26% 16% 135

3 It is useful. 5% 50% 27% 8% 10% 136

4 It gives me more control over the ac-

tivities in my life.

5% 16% 38% 22% 19% 129

5 It makes the things I want to accom-

plish easier to get done.

4% 21% 32% 26% 23% 135

6 It saves me time when I use it. 4% 24% 25% 29% 18% 138

7 It meets my needs. 4% 33% 32% 18% 13% 136

8 It does everything I would expect it to

do.

6% 24% 25% 29% 17% 139

Total 5% 27% 30% 22% 16% 1082

SA = Strongly Agree, A = Agree, N = Neither Agree nor Disagree, D =

Disagree, SD = Strongly Disagree

sponses. The most surprising agreement rate was for “It helps me focus on the im-

portant aspects of programming.” We expected higher agreement given that KODETHON

allows students to simply write and run code without having to install anything. One

explanation is that students may have varying opinions on what is “important” or even

what is “programming.” We were surprised that about a third of participants, 32%, feel

that KODETHON can be useful for “real-world programming.” However, it is in contrast

to observations in [Benotti et al., 2018] that a vast majority of students perceived pro-

gramming in a web IDE as real programming. Exploring these variances may also be

interesting future work.

Lastly, for all items, a significant fraction of responses were neutral. We expected

most students to agree or disagree. One possible explanation is that, as many par-

ticipants reported, they do not use KODETHON often enough to form an opinion. An-

25

www.manaraa.com

Table 2.5. Responses to additional Usefulness items.

Item SA A N D SD Count

1 It helps me become a better program-

mer.

4% 16% 43% 22% 14% 137

2 It is useful for real-world program-

ming.

3% 29% 36% 19% 13% 136

3 It helps me develop skills I will need

in software engineer jobs.

4% 21% 41% 22% 10% 135

4 It helps me focus on the important as-

pects of programming.

5% 20% 38% 24% 12% 138

Total 4% 22% 40% 22% 12% 546

SA = Strongly Agree, A = Agree, N = Neither Agree nor Disagree, D =

Disagree, SD = Strongly Disagree

other possible explanation is that students may feel that they have not been exposed to

enough IDEs to form an opinion. We did not find that any participant simply replied

the same to all items. It would be interesting to investigate this deeper and explore if

there are missing features or usability traits that would cause participants to shift from

neutral to agreement that KODETHON is useful.

We provided participants with a list of 18 features, and asked them to select which

features they found most useful. Table 2.6 shows a summary of the responses. The

most important finding is that what participants find useful corresponds with our hy-

pothesis that many students would find a web IDE useful because it is a convenient,

low-threshold, ready-to- use programming environment. Participants selected “Web-

based” (65%) and “No Installation Required” (61%) as the top two features.

We asked participants to list the most positive aspects (up to 3) in their own words.

We coded 262 responses into 16 categories, shown in Table 2.7. Participants mentioned

many of the same features we provided earlier but in their words. However, here stu-

dents mention the LMS (automatic grading and feedback) 55 times, and the real-time

26

www.manaraa.com

Table 2.6. The top-10 responses to “What features of KODETHON do you find most
useful?”

Feature Participants ↓ Percentage of Participants ↓

Web-based 90 65%

No Installation Required 85 61%

Assignment Grading 73 52%

Works on Multiple Devices 52 37%

Unix Terminal 49 35%

Assignment Feedback 48 35%

Real-time Collaboration 46 33%

Programming Language Support 35 25%

File Cloud Storage 32 23%

Syntax Highlighting Code Editor 32 23%

collaboration features 54 times. Participants also commented on the usability of KODE-

THON saying it was easy to use 36 times and easy to learn 2 times. Here are some

example responses:

• “I appreciate the cloud storage a lot. It saved my grade when my laptop broke.”

• “Code accessible and runnable on any device.”

• “I like how you don’t need to install anything, for beginners this is helpful.”

We also asked participants to list the most negative aspects (up to 3) in their own

words. We coded 237 responses into 14 categories. 56 participants reported difficulties

or issues or difficulties with the user interface. 37 participants mentioned experiencing

issues with file saving. 34 participants responded simply “buggy” or “glitchy” without

elaborating on which feature. A large fraction of the issues experienced by users have

been due to heavy load on the system. As a result, we responded by increasing the

nodes in our cluster, and making performance improvements.

27

www.manaraa.com

Table 2.7. The top-10 categories of open-ended responses to “List the most positive
aspect(s) of KODETHON.”

Feature Responses ↓ Percentage of Responses ↓

Assignment Grading and Feedback 55 21%

Real-time Collaboration and Chat 54 21%

Easy to Use 36 14%

Web-based 18 7%

File Cloud Storage 18 7%

Other 16 6%

Unix Terminal & CDE Shell 13 5%

Programming Language Support 13 5%

No Installation Required 3 9%

Smart Run Button 3 7%

Total 262 100%

Figure 2.6. “List the most negative aspect(s) of KODETHON:”

2.5.3 Characteristics of Adopters

We classified students into two groups: 67 adopters and 73 non-adopters. Adopters

are those who reported using KODETHON “Often” or “Very Often”. The rest are non-

adopters. We searched for individual factors that might correlate with adoption of

KODETHON. We used Chi-square test for independence between adoption and 1) gender

28

www.manaraa.com

Figure 2.7. Adoption by students by university standing.

(p > 0.05), 2) university standing (p < 0.002), 3) programming experience (p > 0.05),

and 4) university college (p > 0.05). We found that adoption correlates with univer-

sity standing (p < 0.002). Students were less likely to adopt KODETHON as standing

increased. We show the results in Figure 2.7. For digital habits, test of independence

failed to find difference between the digital habits of adopters and non-adopters in us-

ing online editing tools such as Google Doc or other web IDEs (p > 0.05). However,

Chi-square test suggested a difference in usage of stand-alone IDEs and editors between

adopters and non-adopters (p < 0.002) which indicates that as students adopt KODE-

THON they tend to not use the alternative stand-alone tools and vice versa.

2.6 Broader Lessons

We discuss some broader lessons resulting from interactions with students and instruc-

tors and supported by our student adoption and perception findings.

Some students prefer a web IDE: Usually, instructors tend to select and present

a single IDE, e.g., CLion. Instead, instructors can provide students with multiple pro-

gramming environment options, including a desktop and a web IDE, and encourage

students to choose one, weighing the benefits and trade-offs. This is consistent with the

principle that every student learns differently and with previous work [Helminen et al.,

2013]. And as our results show, many students will voluntary opt to use a web IDE and

adopters tend to not use stand-alone IDEs. Moreover, students adopted KODETHON not

29

www.manaraa.com

merely because it was novelty but because it provided tangible benefits to them, ease

of use, convenience, and portability. As new generation of students use the web more

often and longer [Matrix, 2014, Strasburger et al., 2013], a web IDE will be a famil-

iar system for them to interact with. Moreover, cloud storage of files seems to assure

students that their programs and homework will not be lost due unexpected hardware

or software failure on their machines. KODETHON also provides them with an easy way

of collaborating in real-time to pair program without having to resort to tools like git

which often introduce more complexities [De Rosso and Jackson, 2016].

A web IDE is not a silver bullet: As our results show, a web IDE is not an ideal tool

for every student. First, many students do not struggle with or do not mind installing

programming tools. Second, web IDEs introduce different challenges. For example,

the user interface is different and can take effort and time to learn. While many users

found KODETHON easy to use, many others felt otherwise. Another example, because

KODETHON is a web application, fluctuations in network speed can cause the user to

experience latency or even downtime. Another example, even if a user enjoys the user

interface and performance, network glitches can negatively impact their experience; an

non-issue in desktop IDEs.

Learning objectives need to be explicit and clear: In discussions with instructors

at University of California, Davis, we have learned that they often have hidden learning

objectives, often unknowingly. One is to learn how to install and configure development

tools. The rationale is that there is value in such a skill. A problem is that this learn-

ing objective is rarely made explicit or evaluated. On balance, some instructors have

found, it is more important to give students a ready-to-use programming environment

so they can spend more time learning to actually write code. Another problem with this

hidden objective that it is too vague; it does not specify which tools (IDEs, text editors,

compilers/interpreters, etc.) should be learned.

Students confuse programming and system building: Based on conversations

with students, many do not consider programming in a web IDE to be “real program-

ming”. This negative view may stem from the fact that some students confuse compu-

30

www.manaraa.com

tational thinking and programming the system building. In system building, developers

must consider the production environment and compile, configure and tests their pro-

grams to meet its requirements, while computational thinking concerns with creating

an appropriate abstraction of the problem domain and encoding the abstraction in a

given programming language. A large portion of topics in computer science curricula,

especially in the introductory courses, focus on the latter. Moreover, system building

is still possible in a web IDE like KODETHON. In fact, there are a growing number of

professional programmers working primarily on web IDEs, like Amazon Cloud9 [Inc.,

2017b] and Eclipse Che [Foundation, 2017], developing on cloud instances.

There is a need for a simple web IDE: When we began developing KODETHON,

there were a few existing web IDEs, namely Runnable [Runnable, 2017], Koding [Kod-

ing, 2017], Nitrous [Lardinois, 2016], and Cloud9 [Inc., 2017b]. None of them were

designed for students and none of them were customizable to our needs at University of

California, Davis. So we decided to build our own. We learned that building a web IDE

that is reliable and scalable for real use is an expensive endeavor with a lot of technical

challenges. With two engineers, it still has taken almost four years to reach our cur-

rent state. Nonetheless, it was a good decision considering that Runnable and Koding

have since changed focus and Nitrous has shut down. While others have surfaced like

CodeAnyWhere [Inc., 2017a] and CodeEnvy [CodeEnvy, 2017], we have been able to

leverage our architecture to introduce a learning management system to help instructors

grade assignments automatically and provide students with instant feedback, a feature

which 52% of participants found useful.

2.7 Threats to Validity

The data presented is based on quantitative anonymous survey study. The results are

limited to responses to the questions. We did not analyze and could not analyze the

system logs in the system to verify the accuracy of responses to questions. Students

background can impact the generalization of the results beyond this study. We de-

ployed the system in a public, selective university, where most students have some prior

31

www.manaraa.com

programming experience. Prior experience can influence their view of educational pro-

gramming tools. For example, they may already know how to set up and configure the

programming tools; in that case, a web IDE is of little value to them. However, in our

survey, majority of students, even some non-adopters, indicated that a web IDE is a

useful tool.

2.8 Conclusion and Future Work

We described a web IDE and its deployment in a large public university. To date, it has

been used by more than 3,000 students in multiple programming courses. We used a

quantitative survey study to evaluate students satisfaction and perception of the system.

In future, we plan to investigate the impact of instructors in the adoption of the tools

and the impact of using a web IDE in the performance of students in courses. Instructors

have a pivotal role in adoption of the system, and forming students’ perceptions about

web IDE. Our informal discussions with instructors showed that there are mixed views

to adopting a web IDE by students: while some instructors are open to adoption of a

web IDE by students, others consider challenges in the installation of the programming

environment an important step that students should deal with them first. We plan to

measure the extent of the impact of instructors view on the adoption of the web IDE by

students.

32

www.manaraa.com

Chapter 3

CompAssist: Synthesizing Minimal
Compilation Repair Examples

Every programmer, from novices to professionals, makes compilation errors. Resolving

compilation errors can be time-consuming, difficult, and frustrating. For decades, error

messages have been identified as a source of this difficulty. A promising approach to

help programmers is to augment error messages with compilation repair examples. The

challenge is how to obtain and present these repair examples.

We present COMPASSIST, a system that generates and refines repair examples. Based

on these repair examples, the system suggests possible patches to users when their

program fails to compile. We evaluated COMPASSIST on a mainstream C++ compiler, and

demonstrate that it can generate examples for more than half (867/1, 686) of compiler

errors. We also conducted a user study where participants found this synthetic repair

examples to be helpful in a majority (5/9) of tasks involving real-world C++ compiler

programs.

33

www.manaraa.com

3.1 Introduction

Programmers of all levels struggle with compiler errors [Altadmri and Brown, 2015,

Hristova et al., 2003, Jadud, 2006, Kummerfeld and Kay, 2003]. Compilers display er-

ror messages to help users locate and resolve code defects. However, these messages are

notoriously difficult to understand, especially by beginners, and can even be mislead-

ing [Barik et al., 2017, Brown, 1983, Becker, 2015, Isa et al., 1983, Traver, 2010]. In

addition to wasting time, programmers can become frustrated and beginners can lose

interest and even quit learning. As programmers gain experience, they learn to rec-

ognize common messages, remember root causes and repairs, and eventually struggle

less. But even as professionals, software engineers continue to make errors [Barik et al.,

2017, Böhme et al., 2017, Seo et al., 2014]. For example, a recent case study at Google

found that C++ and Java developers fail to build programs, on average, 37.4% and

29.7% of the time [Seo et al., 2014]. And it takes them a median of 5 and 12 minutes,

respectively, to resolve each error.

One further complication is that the quality of error messages and tool support varies

by programming language. As a result, as highlighted by the Google study, for example,

the compiler errors made in C++ are different from those made in Java. One likely

explanation is that Java developers (unlike C++ developers) rely on Eclipse’s Quick-

Fix which continuously suggests repairs for Java errors [Eclise, 2018]. However, many

programming languages lack this tool support. Thus, how can we help programmers re-

solve compiler errors who are using an arbitrary programming language and compiler?

One natural step is to improve the messages emitted by compilers [Marceau et al.,

2011a, Marceau et al., 2011b, Nienaltowski et al., 2008, Traver, 2010]. Almost a decade

ago, GCC developers completely replaced the C parser with a top-down parser to pro-

vide better "diagnostic messages" [Free Software Foundation, 2004]. Clang, a newer

compiler frontend, is well-known for focusing on “expressive diagnostic messages” from

the start [Clang, 2018]. However, many compiler error messages remain cryptic across

compilers, including Clang and GCC.

Another approach is to attempt direct repair. Recently, several data-driven auto-

34

www.manaraa.com

mated repair techniques have been proposed. One group aims to learn shallow models

of correct code and repairs [Campbell et al., 2014, Long and Rinard, 2016, Pu et al.,

2016, Gupta et al., 2017, Ahmed et al., 2018]. The hope is that these models can be

used to locate defects and suggest repairs. Another group aims to learn rules/transfor-

mations from repair examples [D’Antoni et al., 2017, Long et al., 2017, Rolim et al.,

2017]. While promising, these techniques have relatively low accuracy and require

data, repair examples. Often the data is mined from student homework submissions

and thus can be a small subset of all possible errors and biased toward beginner errors.

A different and promising direction is to augment existing error messages with ex-

amples [Barik et al., 2014, Becker, 2016, Flowers et al., 2004, Hartmann et al., 2010].

A compilation repair example is a pair of programs that illustrates how to repair a com-

pilation error. Seeing how a similar compiler error has been solved before may help a

programmer resolve his/her own error. The challenge is: how to obtain and present

these repair examples? Given that there many languages, many compilers, and that

each error can be repaired in different ways, manually crafting examples [Kummerfeld

and Kay, 2003] is not feasible. Crowd-sourcing [Hartmann et al., 2010, Mujumdar et al.,

2011] is more feasible but is limited by bootstrapping, data bias, and privacy issues —

see Section 3.8.

We present COMPASSIST, a system that synthesizes minimal compilation repair ex-

amples automatically via a novel FUZZ-AND-REDUCE technique. And, based on these

examples, suggests possible patches for a compiler error. Since the primary intention

of a repair example is to help programmers, examples should be minimal in the sense

that they provide only sufficient code context for a programmer to understand it and

decide if the patch is applicable. Irrelevant context can make a repair example difficult

to comprehend and ultimately not helpful.

The key insight of our approach is that it is much easier to break compilable code

than to repair uncompilable code. At a high-level, we start with a compilable program

c, and randomly mutate it. If the mutated program u is uncompilable, then we have

a compilation repair example! The intuition is that if we do this over many different

35

www.manaraa.com

compilable programs with random mutations, we can get many repair examples and

high coverage of the compiler error space.

We evaluated COMPASSIST on Clang++, a popular mainstream C++ compiler, with

respect to coverage (breadth and depth), example simplicity, and helpfulness. Even

with the simplest token-level fuzzing strategy (single-token mutations), our system is

able to cover more than half (51.4%) all possible error messages in a mainstream C++

compiler, and can provide at least two distinct candidate patches for a large majority

(79.8%) of error messages. A majority (59.6%) of the synthesized examples are “small”

(a proxy for simplicity), containing five or fewer lines of code. Lastly, in a user study

involving 14 participants, with a median 2.5 years of C++ experience, participants found

the examples “helpful” in 5 out of 9 tasks involving real-world C++ compiler errors.

In summary, our contributions are as follows:

• FUZZ-AND-REDUCE, an offline technique to generate and refine compilation repair

examples from a collection of compilable seed programs, and an online technique

to search and present relevant candidate repairs with examples to users.

• COMPASSIST, a practical realization of these techniques, and a quantitative evalu-

ation that shows that our approach can achieve high coverage of compiler errors,

in terms of breadth and depth, and that it can generate simple examples.

• A user study that shows that synthetic repair examples are helpful to programmers

in fixing compiler errors in real-world programs.

The remainder of the chapter is organized as follows: In Section 3.2, we provide

an overview of COMPASSIST. In Section 3.3 and Section 3.4 , we describe the offline

generation and online search components of our system. In Section 3.5, we present

the results of our quantitative evaluation. In Section 3.6, we present our user study. In

Section 3.8, we discuss related work. Lastly, we conclude.

36

www.manaraa.com

Figure 3.1. COMPASSIST User Interface: A user types a C++ program, and compiles
it with the “Compile” button. The system shows colorized compiler output. If the
program triggers a compiler error, COMPASSIST suggests repair patches with minimal
examples to help a user understand the suggested patch. This C++ program was
posted to StackOverflow by a person seeking help understanding and repairing the
compiler error. We label this program T10 in our user study.

Generation

Seeds

c1

c2

. . .

cn

Generator

Fuzz

Reduce

Fix Examples

c1
u1 c′1

u′2 c′2

.

u′m c′m

(c1 , {u})
(c2 , {u})
. . .

(cn , {u})

+

+

+

Search Engine User Interface

User Program Possible Patches

Compiler Output

$ clang++-3.9

insert &

delete int

A

B

C

A B
Error

Message

Fix

Examples

Related

Examples
PatchesTokens +

C

compile extract

+
query

infer,group

tokenize

Auto experiment

Figure 3.2. COMPASSIST Architecture: The generator synthesizes example fixes from a
collection of compilable seed programs. The search engine retrieves and ranks example
fixes given a user program as a query. The web user interface presents example fixes
and suggest possible patches when the user program fails to compile.

37

www.manaraa.com

3.2 Overview

COMPASSIST’s user interface, shown in Figure 3.1, is a web application that compiles

a program, extracts the compiler error message from the compiler output, retrieves

related repair examples, and suggests a list of possible patches. It ranks the patches

to show those are most likely to fix the user program. For each patch, it provides

repair examples which may help the programmer understand the suggested patch, and

determine if it is applicable to his/her particular error. It ranks the repair examples to

show those that have more in common with the user program first.

To illustrate how a programmer benefits from COMPASSIST, let us discuss a real-

world programmer, whom we shall call Mary. Mary wrote the small C++ program shown

in Figure 3.1; she may be just learning inheritance, an important concept in C++. Her

program fails to compile due to a defect involving inheritance. The actual defect is

that the CAT class inherits through private inheritance, which is the default behavior.

Instead, it should inherit through public inheritance, as Mary confirms in her answer. In

other words, she needed to insert public at line 12 before Animal.

Like many programmers, she posts her code and the compiler error to StackOverflow,

and asks for help.1 Other users try but fail to help her. One offers help about casting.

Another asks for additional information, which is probably unnecessary based on her

post. Eventually, Mary posts that she was able to resolve the compiler error on her own

and provides her solution.

Now suppose that instead she uses COMPASSIST for help. She copy-pastes her pro-

gram into the code editor. Then, she clicks “Compile”. The first patch suggestion is the

correct patch, “Insert public”. Mary resolves her compiler error in a matter of seconds

instead of minutes, based from the time difference between her question and answer.

We expect COMPASSIST to be helpful to a programmer in scenarios like this where the

programmer reads the compiler output but still fails to fix the defect. In these cases, the

suggested patches and repair examples would simply be additional information.

1https://stackoverflow.com/questions/27594593/cannot-cast-subclass-to-its-private-base-
class/27594850

38

www.manaraa.com

1 //Error Message: invalid operands to binary expression ('int' and

'int (*)(const Foo &)' (aka int (*)(const int &)'))

2 constexpr int Apply(const int in, int (*f)(const int&)) { return

f(in); }

3 using Foo = int;

4 static constexpr int id(const Foo& i) { return i; }

5 - static constexpr int results1 = Apply(0, &id);

6 + static constexpr int results1 = Apply(0 &id); //Delete comma

Figure 3.3. This is a compilation repair example produced by our FUZZ implementa-
tion. Deleting a comma from line 4 transforms this compilable program c into an un-
compilable program u. The seed is the GCC Test Suite test case “constexpr-60245.C”.

1 //Error Message: invalid operands to binary expression ('int' and

'int (*)(const Foo &)' (aka int (*)(const int &)'))

2 int Apply(int, int(const int&)) {}

3 using Foo = int;

4 int id(const Foo&) {}

5 - int results1 = Apply(0 &id);

6 + int results1 = Apply(0, &id); // Insert comma

Figure 3.4. This is a reduced compilation repair example produced by our REDUCE

algorithm. Compare this with the repair example shown in Figure 3.3. Both trigger
the same error message and both are fixed with the same patch. However, this repair
example is smaller.

Figure 3.2 shows COMPASSIST’s architecture. The frontend is supported by two back-

end components 1) an offline generator that synthesizes repair examples from a corpus

of compilable programs and stores them in a database, and 2) an online search engine

that retrieves and ranks repair examples in response to user queries.

3.3 Offline Generation

The offline generation component, outlined in Figure 3.2, generates compilation repair

examples via a novel FUZZ-AND-REDUCE approach. The example shown in Figure 3.3

was generated by this component.

39

www.manaraa.com

Algorithm 1: Generate compilation repair examples via the FUZZ-AND-REDUCE

approach.
Data: P is a corpus of compilable programs.

1 Function Generate(P)

2 E ← {} // Repair Examples

3 foreach c ∈ P do

4 u← Fuzz(c) // Fuzz seed

5 (exit_status, output)← Compile(u)

6 if exit_status == ERROR then

7 (u′,c′)← Reduce(u,c)

8 E ← E ∪ {(u′, c′)}

9 return E

Definition 1 (Compilation Repair Example) For a specific compiler, (u, c) is a compi-

lation repair example for error message e, if u is an uncompilable program that triggers e,

and c is a compilable program. The difference between u and c is a repair patch (diff) ∆.

Remark 1 (Program Snapshot Pair) A compiler repair example is a specific case of a bug

fix, (buggy, f ixed). These are often collected implicitly, as in HelpMeOut [Hartmann et al.,

2010] and Tracer [Ahmed et al., 2018], or explicitly, as in NoFAQ [D’Antoni et al., 2017].

In general, compilers emit different kinds of error messages and there is usually

more than one way to repair a single kind of compiler error. How can we generate

compilation repair examples for all possible kinds of errors, and generate diverse repair

examples for each kind of error? In other words, how can we get high coverage of the

compiler error space, in terms of breadth and depth? The size of the repair examples

also matters; large repair examples will be likely difficult to comprehend. How can we

minimize repair examples?

A natural strategy for these problem would be to collect uncompilable programs, and

repair them. Tools like HelpMeOut [Hartmann et al., 2010], Crowd::Debug [Mujumdar

40

www.manaraa.com

et al., 2011], NoFAQ [D’Antoni et al., 2017] crowd-source this work to their users. Other

tools like sk_p [Pu et al., 2016], Prophet [Long and Rinard, 2016], DeepFix [Gupta

et al., 2017], Genesis [Long et al., 2017] and TRACER [Ahmed et al., 2018] simply

mine existing repair examples from software repositories.

We define a generation function GENERATE that employs a novel FUZZ-AND-REDUCE

approach, shown in Algorithm 1. For a given compiler, our approach requires a corpus

of compilable programs P. We process each seed individually (line 3). In each iteration,

we fuzz c into u (line 4). We attempt to compile u (line 5). If compilation failed (line

6), then (u, c) is a repair example. We attempt to reduce it from (u, c) to (u′, c′) (line

7). We add the reduced example fix (u′, c′) to our set of examples E (line 8). We can

call GENERATE indefinitely to attempt to generate more examples from each seed. In

our implementation, we store the examples in a PostgreSQL 9.3 database. Figure 3.4

shows an example generated by Algorithm 1.

Exactly how many examples are generated (the size of E) and how many distinct

error messages are covered will depend on many factors, including the seed programs

P and the implementation of FUZZ, which we we describe in the next section.

3.3.1 Fuzzing a Compilable Program

Our approach does not assume or require a specific method of fuzzing seed programs.

Fuzzing the code randomly at the character level will likely generate repair examples.

For example, rewriting C++ programs into Shakespeare excerpts will break them, and

the result will be a compilation repair example, by definition. However, the resulting

patches will likely not generalize to real-world programs. More specifically, it is likely

that few of those patches will be “acceptable” to users — see [Monperrus, 2014] for a

discussion on “fix acceptability”.

We implemented FUZZ as a token-level fuzzer. First, it tokenizes the source code.

Then, it mutates the token sequence. We mutate it by deleting a random token or by

choosing a random token and inserting it at a random position. Finally, it translates

the token sequence back to source code. Figure 3.3 shows a repair example produced

by our FUZZ. We implemented single-token mutations. So patches have high-level in-

41

www.manaraa.com

terpretations like “Insert TOKEN” or “Delete TOKEN” where TOKEN is one of the many

different token types by Clang.2 Many token types precisely identify the corresponding

lexeme. For example, “comma” is just “,” and “ampamp” is “&&”. Some of the token

types are abstract classes, for example, “identifier”, which can represent variable names,

functions names, and type names.

Our fuzzer is 1) black-box, 2) mutation-based, and 3) smart. It is black-box in the

sense that it does not require access to the compiler source code. It mutates existing

compilable programs as opposed to generating seeds from scratch. And it is smart in

the sense that it has knowledge of the token-structure of its inputs (source code).

In a quantitative evaluation (Section 3.5), we show that this simple single-token

fuzzer is effective at covering different error messages. This implementation also helps

ensure that, by construction, patches are small. We leave for future work implement-

ing fuzzers that perform more complex token-level mutations, and that mutate other

structural representations of the source, e.g., the abstract syntax tree.

3.3.2 Reducing a Compilation Repair Example

Given a compilation repair example (u, c), let e be the error message triggered by com-

piling u. Let ∆ be the patch from u to c. Let ∆R be the (reverse) patch from c to u. How

do you reduce c to c′ such that applying ∆R to c′ yields a reduced u′ that fails to compile

with the same error message e? The problem is stated this way to require that, though

u′ and c′ may be smaller, they are still a repair example for the same error message e

and that the repair is, at a high-level, the same. In short, reduction should not change

the essence of the repair example. The repair example shown in Figure 3.4 is a reduced

version of the example shown in Figure 3.3. Note that the programs are smaller but the

patch is the same, "Insert a comma between the arguments to the call to Apply.", with

the difference of positions, of course, since the code has shifted.

A well-known general method of reducing a program is the minimizing Delta Debug-

ging (DD) algorithm [Zeller and Hildebrandt, 2002]. Applying DD naively to u would

systematically delete chunks (e.g. characters) from u until removing chunks no longer

2https://code.woboq.org/llvm/clang/include/clang/Basic/TokenKinds.def.html

42

https://code.woboq.org/llvm/clang/include/clang/Basic/TokenKinds.def.html

www.manaraa.com

Algorithm 2: Reduce a compilation error repair example.
Data: u0 is the source code of a uncompilable program.

Data: c0 is the source code of a compilable program.

1 Function Reduce(u0, c0)

2 u1 ← Format(u0) // 1 token per line.

3 c1 ← Format(c0) // 1 token per line.

4 (u2, c2)← Align(u1, c1) // See description.

5 ∆R
0 ← Diff(c2, u2) // Breaking mutation.

6 c3 ← DeltaDebug(c2, ∆R
0)

7 u3 ← Patch(c3, ∆R
0)

8 u4 ← PrettyPrint(u3)

9 c4 ← PrettyPrint(c3)

10 return (u4, c4) // Reduced repair example.

triggers the same error message e. This could result in a smaller u. A problem with

this approach is that this does not simultaneously reduce c. Also, the new diff ∆′, the

difference between the reduced u′ and the original c, ∆′ may represent a drastically

different repair than the original ∆. There are other well-known methods for reducing

programs. Hierarchical Delta Debugging [Misherghi and Su, 2006] is a faster reduc-

tion algorithm for dealing with tree-structure inputs like XML and program parse trees.

CReduce [Regehr et al., 2012] is a tool specialized for C and C++ programs.

To reduce a compilation repair example, we introduce a novel reduction algorithm

outlined in Algorithm 2. The key ideas are to align the pair of programs first, and to use

a specialized version of DD. We specialize DD in ways. First, we define the chunk-level

to be tokens not characters. Second, we define a different testing function which DD

will use to test if a chunk can be removed. With respect to a compilation repair example

(u, c), let c′ be the reduced version of c in each iteration of DD. The test succeeds if and

only if:

• c′ compiles successfully, and

43

www.manaraa.com

• u′, the result of applying the (reverse) patch ∆R to c′, fails to compile with the

same error message e as u.

Algorithm 2 takes a compilation repair example as input (line 1). It formats each

program so that each program token is on one line (line 2-3). Then, it aligns the

programs (line 4). The basic idea of alignment is that if u1 is shorter than c1 than

you need to insert padding space into u1 that will make it as long as c1. And if u1 is

longer than c1, than you need to insert padding space into c1 to make it as long as u1.

Once aligned, we can compute a patch (diff) ∆0 from u2 to c2 (line 5). We compute a

reverse patch ∆R (line 6). We apply the specialized DD algorithm (line 7), which we

described above. We apply ∆R to the reduced compilable program c′ to get a smaller

uncompilable program u′ (line 8), which, by definition, of the specialized DD should

still trigger the same error message e. Lastly, we pretty print in a standard style so that

users can read it (lines 9-10).

The example shown in Figure 3.4 is a reduced version of the example shown in

Figure 3.3. The new patch ∆′ is the same (except for shifted column position), but,

clearly, it is much easier to understand the surrounding context.

3.4 Online Search

By sampling the repair search space ahead of time, the list of candidate repairs has been

reduced. However, a single error message may contain tens, hundreds, even thousands

of repair examples. This leads to the information retrieval problem of retrieving and

ranking compilation repair examples. In this section, we describe COMPASSIST’s search

engine, outlined in Figure 3.2. As a query, the search engine is given 1) an arbitrary user

program, and 2) a compiler name. The search engine compiles the program using the

specified compiler. If compilation succeeds, the search engine returns an empty result.

Otherwise, it proceeds to retrieve and rank related example fixes.

Retrieval: For an uncompilable program that triggers some error message e, we say

that related compiler repair examples are those that trigger the same error message e or

the same kind of error. The complete set of possible kinds of errors and error message

44

www.manaraa.com

templates can usually be found in the source code of the compiler. In practice, the set

can be inferred and approximated from observed error messages. Given an error mes-

sage e, we map it to its kind, and we retrieve all repair examples of the same kind. For

example, if e is “use of undeclared 'x'”, then it matches “use of undeclared %0”

so we retrieve all example fixes for err_undeclared_var_use which includes examples

for “use of undeclared 'y'”.

Patch Inference: In general, a patch is just the difference between two texts. And it

is difficult to infer the high-level syntactic transformations from a low-level patch [D’Antoni

et al., 2017, Long and Rinard, 2016, Long et al., 2017, Rolim et al., 2017]. Since we

synthesize the repair examples, we obviate this problem. For each repair example, we

know the exact high-level patch (or transformation). This is due to the fact that, in

generating example fixes, we fuzz at a “high-level” representation of the source code.

For example, in Figure 3.1, we show example fixes grouped by patch. The first group

of example fixes contains example fixes where the patch is “Insert public”. To support

user-contributed example fixes, we would have to implement patch inference.

Ranking: We aim 1) to present plausible and “acceptable” possible patches first, and

2) to present repair examples most similar to the user program first in each patch group.

First, we score each of the related repair examples. With input user program uuser, to

score a repair example (u, c), we compute the overlap coefficient [Manning and Schütze,

1999] and subtract the Levenshtein distance [Jurafsky and Martin, 2009] between uuser

and u.

score(u, uuser) = overlap(u, uuser) − lev_dist(u, uuser) (3.1)

Second, we assign a preliminary score to each patch. Let REp denote a group of repair

examples that exhibit patch p. To score a patch p with respect to a user program uuser,

we assign it the maximum score of its corresponding examples REp.

score(p, uuser) = max({score(u, uuser) | (u, c) ∈ REp}) (3.2)

At this stage, the search engine returns a ranked list of patches where each patch has a

ranked list of example fixes. This helps ensure that the time-to-interaction (TTI) is low.

45

www.manaraa.com

Auto-experimentation: We test each patch on the user program using brute-force.

It updates the score of each patch if any experiments resulted in a successful compila-

tion. Based on pilot studies, auto-experimentation improves the ranking of the patch

suggestions. For example, suppose a possible patch is “Insert comma” (ignoring loca-

tion). Then, we apply this patch to every possible location of the tokenized user pro-

gram checking if the patched program compiles. We record experiments that result in

successful compilations. “Delete TOKEN” transformations are easier to experiment with

because we only have to delete the instances of the token type indicated by the patch.

For example, if a patch is “Delete amp”, then we only have to delete the “&” instances of

the user program. If the user program does not have any “&”, then no experimentation

is needed and the score remains the same.

3.5 Evaluation

We evaluated COMPASSIST in terms of compiler error message coverage, and repair

example simplicity. As a proxy for simplicity, we used program size. Specifically, we

investigated the following research questions:

• RQ1: What proportion of compiler errors are covered by the repair examples?

• RQ2: Do we generate a diverse collection of repair examples for each compiler

error?

• RQ3: Are the generated compiler repair examples simple?

3.5.1 Experimental Setup

We focused on a mainstream C++ compiler (clang++-3.9). As the corpus of seed pro-

grams P, we used the GNU GCC test suite. The programs in this corpus are designed to

test how the compiler handles all sorts of programming language features. We used a

subset of 25, 240 compilable programs for C and C++. We ran Algorithm 1 for 10 days.

We executed the compiler, with a timeout of 30 seconds, using the following command:

$ clang++−3.9 −c −Wfatal−e r r o r s − s t d l i b=l i b c++ −s td=c++14

46

www.manaraa.com

Table 3.1. Error Message Coverage.

Component Repair Examples Covered Errors Total Errors Coverage

Lex 925 4 105 3.9%

Parse 27,505 140 216 64.8%

Sema 90,955 734 1374 53.4%

CodeGen 5 2 12 16.7%

All 116,019 867 1686 51.4%

We inspected Clang’s source code to obtain a complete list of kinds of errors and

their corresponding templates. We counted at least 4, 092 distinct diagnostic messages,

including errors, warnings, notes, remarks, and other type of messages. From these, we

identified 1, 686 kinds of error that could potentially be triggered by compiling C and

C++ programs.

3.5.2 Error Message Coverage (Breadth)

We generated 116, 019 repair examples which, combined, triggered a total of 39, 835

distinct error messages. We classified each error message by its corresponding kind of

error. Table 3.1 shows that the repair examples cover 867 (51.4%) out of the 1, 686

different kinds of C++ error messages in Clang. Table 3.1 also shows coverage of Clang’s

four major compilation components. The repair examples trigger 53% and 65% of the

possible error messages in Parse and Sema, respectively. However, the coverage is much

lower for Lex and CodeGen, 4% and 17%, respectively.

Lex handles preprocessing and tokenization of the input source file. Parse and Sema

handle parsing, translating preprocessor tokens into a parse tree, and semantic analysis

of the parse tree. They determine if the code is well-formed. Most compiler error

messages are triggered from these two components. CodeGen translates the abstract

syntax tree (AST) built by Parse and Sema into LLVM IR, optimizes the IR, and generates

assembly code. More details can be found in Clang’s documentation.3

3https://clang.llvm.org/docs/

47

https://clang.llvm.org/docs/

www.manaraa.com

0
50

100
150
200
250
300
350

1 4
22

148

364

Fi
x

E
xa

m
pl

es

0

5

10

15

20

25

1 2
4

11

24.5

P
at

ch
es

(a) (b)

Figure 3.5. Error Message Coverage (Depth): (a) The distribution of repair examples
shows that we generate multiple distinct examples for each error. (b) Similarly, the
distribution of patches shows that we generate multiple distinct patches for each error.

To categorize errors by component, we searched the .cpp files of each component

for instances of the error kind. For example, we searched all files for instances of the

err_undeclared_var_use and found that it occurs in 5 files of the Sema component.

We show how many error kinds are potentially triggered in each component in the

“Total Errors” column of Table 3.1.

Answer to RQ1: The repair examples generated by COMPASSIST cover 867 out of 1, 686

(51.4%) different kinds of C++ error messages in Clang.

3.5.3 Error Message Coverage (Depth)

When we imported repair examples to our PostgreSQL database, we identified and fil-

tered duplicate examples. Since we are using a token-level fuzzer, we used the following

definition:

Definition 2 (Compilation Repair Example Equivalence) Two repair examples, (u1, c1)

and (u2, c2) are equivalent if u1 and u2 trigger the same error message, the token sequences

are identical for u1 and u2, and the token sequences are identical for c1 and c2.

Figure 3.5 shows the distribution of repair examples for each kind of error. The

median number is 22. We generated at least two examples for 777 out of 867 (89.6%)

Table 3.2 shows the ten errors with the most examples. err_init_conversion_failed

is the error with the most examples, 3, 631. Interestingly, all of the top ten errors belong

in the S ema component.

For each error, we also counted the number of distinct patches illustrated by its re-

48

www.manaraa.com

Table 3.2. Errors with the most example fixes.

Error Component(s) Repair Examples

err_init_conversion_failed Sema 3631

err_typecheck_nonviable_condition Sema 1644

err_no_member_suggest Sema 1449

err_bound_member_function Sema 1408

err_member_decl_does_not_match Sema 1250

err_typecheck_convert_incompatible Sema 1241

err_template_arg_list_different_arity Sema 1076

err_template_decl_ref Sema 1068

err_unknown_type_or_class_name_suggest Sema 967

err_no_member Sema 967

err_ovl_no_viable_function_in_init Sema 962

pair examples. Figure 3.5 shows the distribution of patch counts. The median number

of patches is 4. We generated at least two distinct patches for 692 out of 867 (79.8%).

Table 3.3 shows the top ten errors ranked by number of patches. The error with the

highest number of patches is err_init_conversion_failed with 101 distinct patches.

In this case, the top ten errors are not exclusively from Sema but also from Parse.

err_expected is also potentially triggered by the Lex component.

Answer to RQ2: For each error, COMPASSIST generates a diverse collection of repair

examples. It generated at least 2 different repair examples for 89.6% of errors. Also, for

79.8% of errors, it generated at least 2 distinct patches.

3.5.4 Repair Example Simplicity

Recall that seed programs can be of arbitrary size and complexity but the repair exam-

ples should be simple for users to comprehend. As a proxy for simplicity (or complexity),

we use the size (or length) of the uncompilable program, |u|, of the repair example. Cy-

clomatic complexity [McCabe, 1976] and similar metrics [Kasto and Whalley, 2013] are

49

www.manaraa.com

Table 3.3. Errors with the most patches.

Error Component(s) Patches

err_init_conversion_failed Sema 101

err_expected_unqualified_id Parse 96

err_expected_expression Parse 87

err_typecheck_invalid_operands Sema 74

err_expected Parse, Lex 74

err_typecheck_nonviable_condition Sema 73

err_bad_variable_name Sema 70

err_expected_semi_after_stmt Parse 68

err_expected_either Parse, Sema 67

err_expected_semi_declaration Parse 63

0

2

4

6

8

10

12

14

1
3

5 7

13

0

10

20

30

40

50

60

2

15

22 33

60

(a) (b)

Figure 3.6. Repair Example Sizes (a) The median LOC length of repair examples is 5.
(b) The median token length is 4. These distributions tell us that the generated repair
examples are small, and by proxy, simple. Note: Outliers are not shown.

more precise measures but size tends to be a good proxy.

We formatted the repair examples using clang-format-3.9 and the Chromium

style.4 Then we counted the lines of code (LOC), and measured the token sequence

length, tokenized using:

$ clang++−3.9 −cc1 −dump−tokens − s t d l i b=l i b c++ −s td=c++14

−Wfatal−e r r o r s

Figure 3.6 shows the distribution of sizes by LOC and token sequence length. In

summary, 59.6% (69, 418) repair examples have five or fewer LOC. While 6.3% (7, 302)

4https://clang.llvm.org/docs/ClangFormat.html

50

www.manaraa.com

examples consists of just one LOC. We counted 668, 604 LOC and 3, 257, 307 tokens in

total. This means that, on average, each LOC has 4.87 tokens. A majority of examples,

60.75%, have 25 or fewer tokens. There are a few outliers with as many as 209 LOC and

1, 041 tokens.

Answer to RQ3: COMPASSIST generates small example fixes. 59.6% have five or fewer

lines of code.

3.6 User Study

In designing this study, we follow the advice by Ko et al. [Ko et al., 2015] and exem-

plified well by Böhme et al. [Böhme et al., 2017]. We recruited participants and asked

them to resolve compiler errors of 9 C++ programs using the COMPASSIST web applica-

tion. Specifically, we investigate the following research question:

• RQ4: Do programmers find the generated compilation repair examples helpful in

resolving compiler errors of real-world C++ programs?

3.6.1 Pilot Studies

We conducted pilot studies to test the study design and tool implementation. We re-

cruited 6 undergraduate students from a Data Structures university course where the

instruction programming language is C++. We also posted flyers in our department

building. We compensated each participant with a $15 Amazon gift card. We learned

the following lessons:

• Limit Task Scope: Since our implementation generates repair examples illustrating

single-operation, single-token patches, we limit tasks to C++ snippets that require

similar patches.

• Clarify Training: Initially, students felt obligated to read and understand the pre-

sented example fixes. We clarified examples fixes are additional help.

• Infrastructure: Pilot testers suggested improvements to the interface. We decided

51

www.manaraa.com

Table 3.4. C++ Programs Used in Debugging Tasks.

Program Error Message

T1 expected ’;’ after struct

T3 use of undeclared identifier ’height’; did you mean ’heigh’?

T4 static_cast from ’unsigned int *’ to ’int’ is not allowed

T5 expected unqualified-id

T6 type name does not allow constexpr specifier to be specified

T7 indirection requires pointer operand (’size_type[TRUNCATED]

T8 typedef redefinition with different types (’std::[TRUNCATED]

T9 constexpr variable ’res_foo’ must be initialized[TRUNCATED]

T10 cannot cast ’Cat’ to its private base class ’Animal’

to not record the user session because the video did not provide much additional

information.

3.6.2 Design
3.6.2.1 Objects and Infrastructure

We searched for real-world examples of C++ programs where users asked online for help

with compiler errors. To search, we randomly sampled error messages triggered by our

example fixes. For each message, we copy-pasted the message into Google. We reviewed

each web page and collected a snippet that triggered that specific diagnostic message.

Though our approach should generalize, we focused mainly on those snippets that can

be fixed with single-operation, single-token patches due to our current implementation.

Like Barik et al. [Barik et al., 2017], we aimed to constraint the study to one hour or

less. We selected 9 programs, listed in Table 3.4.

To conduct the study remotely, we built a mini application in COMPASSIST that

presents 1) the consent form, 2) the demographics questionnaire, 3) a tutorial video, 4)

the list of tasks and task instructions, 5) individual tasks, 6) task questionnaires, and a

7) final questionnaire.

52

www.manaraa.com

3.6.2.2 Participants and Training

To recruit participants, we distributed flyers in a university algorithms course, via email

to CS students, and on the Facebook page of the university’s CS club. In one week, we

received over 20 responses. We selected 14 participants who had some C++ experience,

e.g., one of the two C++ courses taught at our university. Out of the 14, 8 were under-

graduate students; 3 had a Bachelor’s degree; 2 were graduate students; 1 had a Ph.D.;

2 self-identified as female. Participants reported a median 2.5 years of C++ experience,

ranging from 0 to 8. All participants read and signed an online consent form which

provided an overview of the study along with basic instructions.

Participants were asked to watch a tutorial video, 2 min 30 secs long, that described

COMPASSIST’s user interface: the code editor, compiler output, and list of possible

patches.

3.6.2.3 Tasks

We instructed participants to 1) find and fix the code defect, and 2) submit their solution

for each of the 10 C++ programs. As constraints, we allowed 5 minutes and disallowed

internet or external help, since the programs and solutions were found online. Submis-

sions after 5 were marked as timeout. After each task, we asked participants:

Q1) How helpful was the compiler error message?

Q2) How helpful were the repair examples?

We defined the following 4-point Likert-type scale:

0. Not at all helpful 1. Somewhat helpful 2. Helpful 3. Very helpful

3.6.2.4 Debriefing

Since we performed the study online, we debriefed via email. We identified the defect

in each program, and explained the solution.

53

www.manaraa.com

●●

T10

T9

T8

T7

T6

T5

T4

T3

T1

Not at all
helpful

Somewhat
Helpful

Helpful Very helpful

Rating

Ta
sk

Figure 3.7. After each task, participants rated the helpfulness of repair examples.
Participants rated examples as helpful (“Somewhat helpful” or above) in 5 out of 9
tasks.

3.6.3 Results

Figure 3.7 shows a summary of the helpfulness ratings. Based on the median rating,

participants found the example fixes “Somewhat helpful” or better for 5 out of the 9

tasks , T5, T6, T7, T9, and T10.

As expected, we observed a negative correlation between the helpfulness of compiler

error messages and repair examples. When participants rated compiler error messages

as “Very helpful”, they rated repair examples as less than “Somewhat helpful”. In con-

trast, when they found example fixes to be “Very helpful”, they rated error messages to

be least helpful, between “Somewhat helpful” and “Helpful”.

Participants rated the repair examples as “Very Helpful” for T6, shown in Figure 3.8,

giving it a median “Very helpful” rating. In contrast, participants rated the error message

as “Somewhat helpful”. In the source web document, the patch suggested to resolve the

compilation error is “Delete constexpr from line 5”.5 Our tool shows the same patch

(minus the location) as the first suggestion, and shows that auto-experimentation was

5https://stackoverflow.com/questions/37993732/is-it-possible-to-define-type-alias-to-constexpr-
function

54

www.manaraa.com

Figure 3.8. This is C++ program T6. Participants rated the repair examples show for
this program as “Very helpful”.

successful. All participants, except one, applied this patch.

Participants rated the repair examples as “Helpful” for T10, shown in Figure 3.1. As

we discussed in Section 3.2, our tool also suggests a patch, “Insert public”, that resolves

the compiler error.

We reviewed the reasons provided by participants as to why the found repair exam-

ples and the suggested patches helpful. We categorized their responses into three major

reasons:

1. Repair examples illustrated patches that resolved the compiler error. As P12 put it,

“the ones they got right they were perfectly good”

2. Repair examples helped with unfamiliar C++ concepts. P1 said, “Suggested patches

was helpful for error messages to concepts that I am unfamiliar with.” P8 said,

“The suggested patches and examples were a good refresher and helped save me

a lot of time.”

3. Repair examples suggested possible actions. P2 said, “repair examples some possible

55

www.manaraa.com

Figure 3.9. This is C++ program T7. Participants rated the repair examples show for
this program as “Helpful”.

moves you can make from the current state of the program.” P11 said, “repair

examples told me exactly what to do to fix the compiler error even though I had

no idea what was going on.”

Repair examples are intended to complement the compiler output not substitute it.

In this study, we either presented the compiler output and example fixes, or just the

compiler output. Ideally, example fixes would be shown to a user after he/she 1) reads

the error message(s), and 2) fails to resolve the error. In such a scenario, we believe

example fixes can only help a programmer. We need to collect more data to investigate

this effect.

3.6.3.1 User Performance

We graded submissions as correct, incorrect, or timeout. Table 3.5 shows an overview

of task performance with respect to correctness. Overall, participants performed better

with repair examples, 93%, than without, 84%; a difference of 11%. In 4 out of 9 tasks,

T1, T4, T9, and T10, participants performed better with repair examples. However, in 3

tasks, T5, T6, and T8, participants performed better without repair examples. In 2 out

56

www.manaraa.com

Table 3.5. Overview of Task Performance.

Task nc + ne

Control Experimental

nc C C% I T ne C C% I T

T1 14 4 3 75% 0 1 10 10 100% 0 0

T3 14 4 4 100% 0 0 10 10 100% 0 0

T4 14 10 6 60% 2 2 4 3 75% 0 1

T5 14 6 6 100% 0 0 8 7 88% 0 1

T6 14 4 4 100% 0 0 10 9 90% 1 0

T7 14 7 7 100% 0 0 7 7 100% 0 0

T8 14 8 8 100% 0 0 6 5 83% 1 0

T9 14 8 6 75% 0 2 6 6 100% 0 0

T10 14 5 3 60% 1 1 9 8 89% 0 1

All 140 64 54 84% 4 6 76 71 93% 2 3

C = Correct, I = Incorrect, T = Timeout

of 9, T3 and T7, there was no difference.

We also recorded the start time and submission time for each task. Figure 3.10

shows the distribution of time-to-submission. Participants were not instructed to submit

as early as possible. The variance across tasks is clearly visible. Overall, participants

submitted a solution faster when shown repair examples; median of 48 secs compared

to a median of 64 secs.

Answer to RQ4: Participants found repair examples helpful (“Somewhat helpful” or

better) in resolving compiler errors of 5 out of 9 real-world C++ programs. Participants

also performed better with repair examples with respect to correctness and time-to-

submission.

3.6.4 Additional Feedback

Participants suggested two major improvements.

57

www.manaraa.com

●●● ●●● ●●●

●

●

●

●

●

●

All

T10

T9

T8

T7

T6

T5

T4

T3

T1

0 100 200 300
Time (secs, less is better)

Ta
sk

Group experimental control

Figure 3.10. Time to Submission: Overall, participants submitted a solution faster
when shown repair examples; median of 48 secs compared to a median of 64 secs.

1. Automatically apply patches where auto-experimentation succeeded to the user

program. As P7 put it, “the tool should demonstrate the fix on the code snippet

itself”. Since this study, we have implemented this change.

2. The tool should provide explanations. As P11 put it, “the tool should provide

an explanation as to why a change would fix the error.” P12 said, “give better

patch explanations”. We plan on implementing a feature to allow users to provide

English explanations

3.7 Discussion

Generalizability: Based on our quantitative and qualitative results, we believe our

approach is effective and can be adapted to any mainstream compiler, e.g., javac and

58

www.manaraa.com

gcc. Mainstream compilers emit a diverse set of error messages that are meaningfully

partitioned. Our approach should still work for a hypothetical compiler that only emits

"Compiler Error". Though, the generated repair examples will not be partitioned.

Coverage: Based on achieved coverage, it is fair to say that our implementation

needs improvement. Fortunately, there are clear ways in which we can improve it.

First, we can run the generation (precomputation) step for a longer time; we only ran

it for 10 days. Second, we can use seeds from different sources, not just from the GCC

test suite. This may increase the diversity of language features and idioms. Fourth, we

can add more diverse mutations to our fuzzer, e.g., AST mutations. One uncontrollable

factor that may be affecting our measurements is the feasibility of triggering errors.

We identified where error messages may be triggered but we did not determine if it is

possible to trigger them.

Fuzzer: Based on our results, our fuzzer which only performs single-token, single-

operation mutations is simple but profitable. Its simplicity reflects our intuition, likely

shared by others, that compiler repairs are small (and simple). In conducting our user

study, it was relatively easy to find real-world uncompilable programs which required

single-token repairs. Our fuzzer also reflects our priority to explore the compiler error

space, not the space of all possible mutations.

There are clear ways in which we can improve our fuzzer. First, we can support

multi-token fuzzing. Theoretically, we should be able to trigger any error in this manner

except lexer errors, though there are relatively few lexer errors (see Table 3.1). Perhaps

more profitable, we can implement more complex mutations, like AST operations. For

example, we can support randomly inserting or deleting entire program statements (or

expressions) — consider the common case where you forget to declare a variable and

have to go up in the code and add a declaration statement. Third, given a distribution

of actual repairs, we can sample mutations non-uniformly. This could help ensure that

our repairs are more natural.

Bias: A goal of our approach is to generate repair examples for all compiler errors.

However, it is possible that the errors we trigger are those that people do not care about

59

www.manaraa.com

(unimportant). Search engine result count can be a good proxy for importance since

when someone has trouble with an error message, he/she may post about it online.

We re-scored search result counts from Bing. We observed no difference between the

distributions of covered error messages and all error messages. Hence, we conclude

that there is no apparent bias.

Auto-experimentation: In our current implementation, we use brute-force to test

candidate repairs. Auto-experimentation depends on the number of candidate repairs

and the size of the user program. Can we auto-experiment efficiently on an arbitrary

program? We believe we can since 1) the number of possible repairs is, on average,

small, and 2) the size of the user program can become irrelevant if restrict to a small

region.

Implicit Dialogue: There is an implicit dialogue between COMPASSIST and the

user. The user says, “This is my program and this is the error message.” COMPAS-

SIST says, “Here are some candidate repairs with examples of how you can apply it.”

The user reviews the suggested repairs and decides which one, if any, is applicable. With

auto-experimentation, COMPASSIST also tells the user, “I have experimented with these

patches and these repair your program.” We can improve this dialogue by automatically

aligning the user program to the repair examples. One potential method is to perform

alpha-renaming of variable names, and perform approximate string matching.

3.8 Related Work

Numerous tools, techniques, and even programming languages have been developed to

help programmers with compiler errors [McIver, 2000, Omar et al., 2017]. To the best

of our knowledge, this is the first approach that pre-computes compilation repairs with

minimal examples, and presents them to the user as candidate patches.

3.8.1 Compiler Error Augmentation

Early, compilation repair examples were created manually. Over a decade ago, Kum-

merfield et al. developed a “web-based reference guide” where “each error message

is explained with examples highlighting the problem and at least one possible correc-

60

www.manaraa.com

tion” [Kummerfeld and Kay, 2003]. They gave students 8 uncompilable programs and

asked them to fix them using their tool. They found that the tool helped novice students

perform similarly to expert students. Toomey [Toomey, 2011] developed a modified ver-

sion of the BlueJ IDE that provided English advice on how to fix common errors which

sometimes included snippets.

Recently, repair examples have been crowd-sourced. Hartmann et al. developed Help-

MeOut, a plugin to a Java IDE, that crowd-sources the creation of “solutions” (compila-

tion repair examples) to its users [Hartmann et al., 2010]. It is rather comprehensive

in that it explores ranking repair examples, system that collects “successful solutions”

from users, supports manually adding English explanations, and even voting. Mujum-

dar et al. presented Crowd::Debug, a tool that aimed to apply HelpMeOut’s approach to

dynamic programming languages, namely Ruby [Mujumdar et al., 2011].

The strength of crowd-sourcing is that the collected repair examples are “natural”.

Though, our user study suggests that synthetic examples are helpful as well. As an ap-

proach, crowd-sourcing has serious limitations. The collection needs to be bootstrapped

to be useful to initial users. The collected examples may not cover the entire compiler

space and may saturate certain errors. User adoption may also be low because people

usually do not want to or are not allowed to share their code.

COMPASSIST differs in that repair examples are synthesized completely automati-

cally via our FUZZ-AND-REDUCE approach. This allows it to cover a greater portion of

the compiler error space, and to provide multiple examples for each compiler error.

Since we create high-level patches, this allows us to not only augment compiler errors

but to attempt automatic repair!

Our user study and the results of related tools support the hypothesis that good

examples can help programmers. However, there is still ongoing debate regarding the

effectiveness of augmenting compiler errors with repair examples [Denny et al., 2014,

Pettit et al., 2017].

61

www.manaraa.com

3.8.2 Automated Program Repair

Most well-known program repair techniques focus on logic errors while COMPASSIST

deals with compilation errors. For example, recently, Yi et al. studied the feasibility

of using automated program repair of in introductory programming assignments but

focused solely on logic errors [Yi et al., 2017].

Search-based: Traditional search-based automated program repair techniques, like

GenProg [Le Goues et al., 2012, Weimer et al., 2009] and PAR [Kim et al., 2013], focus

on repairing logic errors. They depend on a fitness function and a test suite to guide

their search for a correct program. The intuition is that if a patch leads to a mutant that

passes more test cases, then that direction should be further pursued. We are not aware

of any extension of these techniques that successfully constructs a fitness function based

primarily on compiler output and independent of a test suite. We believe the difficulty

lies in the coarseness of the compiler output; a program either compiles or not. Worst, if

a patch triggers a different error, then it is unclear if the new program is closer to being

compilable.

Model-based: Learned models can help identify and fix compilation and logic de-

fects. Campbell et al. trained an n-gram model over compilable Java programs, and eval-

uated it by locating errors in a synthetic corpus of uncompilable code [Campbell et al.,

2014]. Long et al. developed Phropet, a system that learns a probabilistic model from

successful patches. It uses this model to assign probabilities to candidate patches [Long

and Rinard, 2016]. Pu et al. designed and trained seq2seq neural network model se-

quence on correct student programs and used it to correct syntactic and logic errors of

incorrect programs [Pu et al., 2016]. Similarly, Gupta et al. trained a seq2seq model

with attention with the design objective of being task-independent. TRACER is a re-

cent effort that combines program analysis and deep learning to fix compiler errors in

student programs [Ahmed et al., 2018].

Rule-based: Other approaches learn rules (or transformations) from repair ex-

amples. NoFAQ learns transformations rules from crowdsources examples of “buggy

and repaired [shell] commands”. With these rules, it can repair “buggy [shell] com-

62

www.manaraa.com

mands” [D’Antoni et al., 2017]. Refazer is a similar technique that learns syntactic

transformations from “input-output examples” [Rolim et al., 2017]. The learned trans-

formations can be useful in debugging and refactoring tasks. Singh et al. introduced

an approach that learns transformations expressed in a error modeling language [Singh

et al., 2013].

COMPASSIST differs from most of the approaches described above in that it is not

data-driven; all repair examples are synthesized via fuzzing. This leads to a different

search strategy because the precomputation step vastly reduces the patch search space

and enables quick auto-experimentation. In our current implementation, this space

reduction means that we cannot always suggest a patch acceptable to the user. But we

can always show possible patches with minimal examples, something that users found

to be a helpful fallback.

3.9 Conclusion and Future Work

This chapter presented COMPASSIST, a system that generates example fixes for compiler

errors offline, and, based on these example fixes, suggest possible patches to users when

their program fails to compile. We also presented the FUZZ-AND-REDUCE technique un-

derlying this system. More importantly, we have shown that is possible to automatically

generate example fixes that can be used to augment compiler error messages and po-

tentially for other applications.

As future work, we plan to support user-contributed fix examples. The challenge

we foresee is how to infer high-level syntactic transformations [Rolim et al., 2017]. We

also plan to investigate the possibility of automatically generating English explanations

of the fix examples. Lastly, we plan to investigate the effectiveness of this approach on

compilers and interpreters for other programming languages.

63

www.manaraa.com

Chapter 4

On the Lexical Distinguishability of
Source Code

Natural language is robust against noise. The meaning of many sentences survives the

loss of words, sometimes many of them. Some words in a sentence, however, cannot

be lost without changing the meaning of the sentence. We call these words “wheat”

and the rest “chaff”. The word “not” in the sentence “I do not like rain” is wheat

and “do” is chaff. For human understanding of the purpose and behavior of source

code, we hypothesize that the same holds. To quantify the extent to which we can

separate code into “wheat” and “chaff”, we study a large (100M LOC), diverse corpus

of real-world projects in Java. Since methods represent natural, likely distinct units

of code, we use the ∼9M Java methods in the corpus to approximate a universe of

“sentences.” We extract their wheat by computing the function’s minimal distinguishing

subset (MINSET). Our results confirm that functions contain much chaff. On average,

MINSETS have 1.56 words (none exceeds 6) and comprise 4% of their methods. Beyond

its intrinsic scientific interest, our work offers the first quantitative evidence for recent

promising work on keyword-based programming and insight into how to develop a

powerful, alternative programming model.

64

www.manaraa.com

4.1 Introduction

A basic but strong assumption underlies many research and engineering efforts like

code search, code completion, keyword programming, and natural programming: From

a “small” subset of words, a system can find or generate a larger, executable piece of

code.

This assumption is crucial in code search work. The body of work breaks the

search problem into three sub-problems 1) how to store and index code [Bajracharya

et al., 2006, McMillan et al., 2011], 2) what queries (and results) to support [Reiss,

2009a, Reiss, 2009b], and 3) how to filter and rank the results [Bajracharya et al.,

2006, Mandelin et al., 2005, McMillan et al., 2012]. The person doing the search only

has one concern: “What should I type to find the code I want?”. Efforts focus on building

better search engines not on determining to what extent this assumption holds.

This assumption is also critical in keyword and natural programming implementa-

tions [Little and Miller, 2007, Little et al., 2010, Le et al., 2013, Miller et al., 2008].

Almost a decade ago, Little et al. devised a keyword programming technique to trans-

late keyword queries into valid Java expressions [Little and Miller, 2007]. Several tools

and tools and techniques grouped under the general term of Sloppy Programming fol-

lowed [Little et al., 2010, Miller et al., 2008]. These tools interpret keyword queries

directly by first translating them into source code. SmartSynth [Le et al., 2013] is a

much more recent incarnation. It generates automation scripts for smartphones from

natural language queries. First, it uses natural language processing techniques to parse

the queries. Then it applies program synthesis techniques to the parsing result to con-

struct the scripts.

Our vision is to generalize current keyword programming systems into a new pro-

gramming model where users “program” using a minimalist, universal programming

language. The programmer should be to write down thoughts and not worry about

syntax details.

Our idea to advance this vision is inspired by the observation that natural language

is robust against noise. The meaning of many sentences survives the loss of words,

65

www.manaraa.com

sometimes many of them. In other words, the sentence or one similar can often be

reconstructed given a few key words. We call these words “wheat” and the rest “chaff”.

We hypothesize that this intuitive observation about natural language also holds for

programming languages:

Wheat and Chaff Hypothesis: Units of code consists of 1) “wheat”, important lexical

features that preserve meaning, and “chaff”, and 2) the “wheat” is small compared to

“chaff.”

If we can distill source code into “wheat”, perhaps, we can gain insights into how

to expand “wheat” into source code and, thus, take a step toward realizing the new

programming model we envision. In these terms, the programmer would write the

“wheat” and the system would fill in the “chaff.”

We call the phenomenon of distilling source code into a subset of lexical features that

uniquely identifies it, lexical distinguishability. By studying lexical distinguishability, we

are the first to provide quantitative and qualitative evidence that the Wheat and Chaff

Hypothesis holds. The benefit of our approach is that we establish the existence of

a “small” subset of words that uniquely maps to a larger, executable piece of code;

thus, we provide evidence supporting the assumption underlying much work. The main

limitation of our approach is that the “wheat” is artificial; it may not be what a human

would use in applications like code search or keyword programming. We attempt to

overcome this limitation.

We focus our study on a diverse corpus of real-world Java projects with 100M lines of

code. The approximately 9M Java methods in the corpus form our universe of discourse

as methods capture natural, likely distinct units of source code. Against this corpus, we

compute a minimal distinguishing subset (MINSET) for each method. This MINSET is the

wheat of the method and the rest is chaff. We represent each method as a bag-of-words.

We develop an algorithm to compute their MINSETS. A lexicon is a set of words. Like web

search queries, MINSETS are built from words in a lexicon. We run our algorithms over

different lexicons, ranging from raw, unprocessed source tokens to various abstractions

of those tokens, all in a quest to find a natural, expressive and meaningful lexicon that

66

www.manaraa.com

culminated in the discovery of a natural lexicon to use for queries (Section 4.4.3).

Our results show programs do indeed contain a great deal of chaff. Using the most

concrete lexicon, formed over raw lexemes, MINSETS compose only 4% of their methods

on average. This means that about 96% of code is chaff. While the ratios vary and

can be large, MINSETS are always small, containing, on average, 1.56 words, and none

exceeds 6. We observed the same trend over other lexicons. Detailed results are in Sec-

tion 4.4. Section 4.6 also discusses existing and preliminary applications of our work.

Our project web site (http://jarvis.cs.ucdavis.edu/code_essence) also contains

more information on this work, and interested readers are invited to explore it.

Our main contributions follow:

• We define and formalize the MINSET problem for rigorously testing the Wheat and

Chaff hypothesis (Section 4.2.4);

• We prove that MINSET is NP-hard and provide a greedy algorithm to solve it (Sec-

tion 4.2.5);

• We validate our central hypothesis — source code contains much chaff — against a

large (100M LOC), diverse corpus of real-world Java programs (Section 4.4); and

• We design and compare various lexicons to find one that is natural, expressive,

and understandable (Section 4.4.3).

The rest of this chapter is organized as follows. In Section 4.2 we define lexical

distinguishability of source code and explain how we study it. Section 4.3 describes our

Java corpus, and implementations of the feature extractor and the MINSET algorithm.

Section 4.4 presents our detailed quantitative and qualitative results. Section 4.5 ana-

lyzes our results and their implications. Section 4.7 places our work into the context of

related work, and Section 4.8 concludes.

4.2 Problem Formulation

In this section, we describe how we determine if a piece of code is lexically distin-

guishable. We explain our representation of code. We also introduce several definitions

67

http://jarvis.cs.ucdavis.edu/code_essence

www.manaraa.com

including distinguishing subset, MINSET, and the MINSET problem. Finally, we present

and discuss our MINSET algorithm.

4.2.1 Bag-of-Words Model

The first step in our formulation is to define the unit of code. One could choose units

like individual statements, blocks, functions, or classes. In this study, we view functions

as the units of code. This granularity seems adequate. Functions are natural, likely

distinct, pieces of code and functionality. Functions are also reusable building blocks of

more complex components.

We represent a unit of code, function, as a set of lexical features or bag-of-words. We

disregard syntactic structure, order, and multiplicity. First, we parse each function to

get its set of lexemes. A lexeme is a delimited string of characters in code, where space

and punctuation are typical delimiters; it is an atomic syntactic unit in a programming

language.1 Then, we map each lexeme to a word.

What is a “word”? A word is a lexeme, or some abstract or refined form of it. A

lexicon is a set of words. For example, a natural, basic lexicon is the set of raw lexemes.

Using this lexicon, the mapping of lexemes-to-words would be simple. Each lexeme

would map to itself. The bag-of-words for each function would be its set of lexemes.

4.2.2 Lexicons

What is a word depends on the choice of the lexicon. The freedom to define the lexicon

allows us to sharpen, blur, or even disregard certain lexical features.

New lexicons can be formed by abstraction over lexemes. In natural languages, for

example, the words in a sentence can be replaced by their part of speech, like NOUN,

VERB, or ADJECTIVE, to highlight phrase structure. Similarly, code parsers tag each

lexeme with one of a set of token types. For example, the javac lexer defines 101 token

types, for example, IDENTIFIER and INTLIT [Oracle, 2012]. This set of token types is

another natural but clearly more abstract lexicon. Using this lexicon, we would map

each lexeme to its token type. For example, “3.14” would map to INTLIT. A word would

1Linguistics defines a lexeme differently. A lexeme is the set of forms a single word can take. For
example, ‘run’, ‘runs’, ‘running’ are all forms of the same lexeme identified by the word ‘run’.

68

www.manaraa.com

be one of the 101 token types. The bag-of-words for each function would be a subset of

these 101 token types.

New lexicons can also be defined by filtering specific lexemes. For example, we can

define a lexicon consisting of all lexemes except separators, like “(” and “)”. Using

this lexicon, we would map each lexeme to itself except separators. Separator lexemes

would map to nothing. The bag-of-words for each function would be it’s set of lexemes

minus the separator lexemes.

Homonyms Functions may contain, to adapt a word from linguistics, homonyms:

identical lexemes with distinct effects on behavior. For example, in Java, the lexeme

”get” could be a method call of “java.util.Map.get()” or “java.util.List.get()”. In

Java, we can fully qualify homonyms to distinguish them.

Synonyms We can preserve lexical differences that we suspect capture differences

in the behavior of a method by ensuring that different lexemes map to distinct words.

We can also blur lexical differences by abstracting distinct lexemes we suspect have

the same effect on behavior, i.e. synonyms, to the same word. For example, variable

identifiers can be replaced with their type under a language’s type system. In the top

method shown in Figure 4.1, the parameter “array” could just as well have been named

“values”.

In general, a lexicon that is fine-grained and concrete may exaggerate unimportant

differences between functions, while one that is coarse and abstract may blur important

differences. Varying the lexicon allows us to explore programming language-specific in-

formation. The lexicon consisting of all lexemes probably includes many elements that

distinguish but probably have little to do with the behavior of functions, i.e., delimiters

and string literals like "Joe". We can filter those lexemes. We can also filter other lex-

emes, like the type annotation “int” in “int cars = 0;”, to explore how distinguishing

they are.

4.2.3 Illustration of the Bag-of-Words Model

Figure 4.1 shows two Java methods found in real-world projects, Apache Log4j and

JMRI (A Java Model Railroad Interface), respectively. The first method sorts an array of

69

www.manaraa.com

1 private static void bubbleSort(int array[]) {

2 int length = array.length;

3 for (int i = 0; i < length; i++) {

4 for (int j = 1; j > length - i; j++) {

5 if (array[j-1] > array[j]) {

6 int temp = array[j-1];

7 array[j-1] = array[j];

8 array[j] = temp;

9 }

10 }

11 }

12 }

13

14 static void bubblesort(String[] values) {

15 for (int i=0; i<=values.length -2; i++) {

16 for (int j=values.length -2; j>=i; j--) {

17 if (0 < values[j].compareTo(values[j+1])) {

18 String temp = values[j];

19 values[j] = values[j+1];

20 values[j+1] = temp;

21 }

22 }

23 }

24 }

Figure 4.1. This listing shows two Java methods. Both implement the BubbleSort
algorithm. (top) Sorts an array of integers. (bottom) Sorts an array of strings.

70

www.manaraa.com

for if int

array i j length temp

0 1

[[< > - = ++

. ; () { }

for if int

compareTo i j length temp

0 1

[[< <=- = ++

. ; () { }

String

values

2

+ >= --

bubbleSort (int array[]) bubbleSort (String[] values)

common words

Figure 4.2. (left) This is the simplified bag-of-words representation of the method that
sorts an array of integers using Bubble Sort. (right) This is the simplified bag-of-words
representation of the method that sorts an array of Strings using Bubble Sort. Note:
The words in common are shaded.

integers. The second one sorts an array of Strings. They both sort using the Bubble Sort

algorithm.

Figure 4.2 shows their simplified representation as a bag-of-words. For this exam-

ple, we have defined the lexicon to be all lexemes. Thus, the words are simply the raw

lexemes. To help visualize the similarity between these two methods, we have shaded

the words in common; there have 21 words in common. This should not be surprising.

Both methods implement the same functionality. The main difference is that they oper-

ate over elements of different types, “int” and “String”. By shading the common words,

we also highlight the differences between these two methods. For example, the second

method uses the “--” (decrement) operator in the second loop to iterate backwards.

4.2.4 Distinguishable Code

We simplified the representation of a function by mapping its source code to a set of

lexical features, bag-of-words. Finding what distinguishes a function lexically is thus

reduced to finding a unique subset of code features or words. This unique subset distin-

guishes each function from all other functions (when each functions is represented as

a bag-of-words). We call any such subset a distinguishing subset, and define it precisely

in Definition 4.2.1. A function may not have a distinguishing subset. We call those that

71

www.manaraa.com

do, distinguishable (Definition 4.2.2).

Definition 4.2.1 Given a finite set S , and a finite collection of finite sets C, S ∗ is a distin-

guishing subset of S if and only if:

P1 S ∗ ⊆ S , S ∗ is a subset of S

P2 ∀C ∈ C, S ∗ * C, S ∗ is only a subset of S

Definition 4.2.2 A unit of code is lexically distinguishable if it has a distinguishing sub-

set.

The MINSET problem A unit of code may have more than one distinguishing sub-

set. To determine if it is distinguishable, we simply need to find one. We focus on

finding a minimum distinguishing subset (MINSET). We call this The MINSET Problem

(Definition 4.2.3). It is the core computational problem that we study.

Definition 4.2.3 (The MINSET Problem) Given a finite set S , and a finite collection of

finite sets C, find a minimum distinguishing subset (minset) S ∗ of S .

A MINSET identifies a piece of code. It consists of lexically distinguishing features.

Some features may crucially differentiate its behavior from similar functions. Some may

not. A MINSET, however, is not itself executable. It depends on its surrounding context

to execute and provide functionality.

In the keyword-query sense, a MINSET is the smallest query that will uniquely iden-

tify and recall a piece of code. It may not be what humans would actually attempt

to use. That is a separate challenge. In this study, we focus on finding and studying

minsets.

Theorem 4.2.1 MINSET is NP-hard.

Proof 1 We reduce HITTING-SET to MINSET. First, let us recall the HITTING-SET problem:

Given a set A, a collection of subsets of A, {B1, . . . , Bm}, and a number k, does there exist a

set H ⊆ A of size k such that H ∩ Bi , ∅ for 1 ≤ i ≤ m?

72

www.manaraa.com

Now, let us define MINSET as a decision problem. Given a finite set of finite sets C, a

finite target set S , and a number p, does there exist a set S ∗ ⊆ S of size p such that S ∗ is

not contained in any of the sets in C?

Consider an arbitrary instance hs = 〈A, {B1, . . . , Bm}, k〉 of the HITTING-SET problem.

We construct an instance ms of the MINSET problem with the following equations:

1. C = {A \ B1, . . . A \ Bm};

2. S = A: and

3. p = k.

By definition, hs is a “Yes" instance of the HITTING-SET problem if and only if there

exists H ⊆ A of size k such that H ∩ Bi , ∅, 1 ≤ i ≤ m. Since H ∩ Bi , ∅ if and only

H * A \ Bi, when H ⊆ A and Bi ⊆ A, a hitting set H exists if and only if there exists H ⊆ A

of size k such that H * A \ Bi, i ≤ i ≤ m. By definition, such a MINSET H exists if and only

if ms is a “Yes" instance of the MINSET problem. �

4.2.5 The MINSET Algorithm

Since the MINSET problem is NP-hard, we present Algorithm 11, a greedy (approxima-

tion) algorithm that finds the locally minimal distinguishing subset of a set S . Given in-

puts S , the target set to be minimized, and C, a collection of sets against which S is min-

imized, the MINSET algorithm computes S ∗, and C′. C′ is the subset of C whose sets con-

tain S so C\C′ contains those sets in C that do not contain S . When C′ = ∅, S ∗ is a subset

of S that distinguishes S from all sets in C. The core of the algorithm is Line 4. Equality

is needed in the cardinality test for cases like S = {a, b},C = {{a, x}, {a, y}, {b, x}, {b, y}},

where all the elements in S differentiate S from the same number of sets in C. Equality

also means that Cx can be empty, as for S = {a} and C = {{x}, {y}}, since |Ca| ≤ |Ca| = 0,

and Cx can also be C again, when S ⊆ C,∀C ∈ C, as in S = {a} and C = {{a}, {a, b}, {a, b, c}}.

Figure 4.3 shows a sample run of the algorithm. It ends in two iterations. It finds a

MINSET of {a, b, e} with respect to the collection C = {{a, c}, {b, c, d}, {a, d, e}}. The MINSET

is {b, e}. None of the sets in C contain this MINSET.

73

www.manaraa.com

Algorithm 3: Given the universe U, the finite set S , and the finite set of finite sets

C, MINSET has type 2U × 22U
→ 2U × 22U

and its application MINSET(S ,C) computes

1) S ∗ ⊂ S , a subset that distinguishes S from sets in C, and 2) C′, a “remainder”,

i.e. a subset of C whose sets contain S and therefore from which S could not be

distinguished; when C′ = ∅, S ∗ distinguishes S from all the sets in C’; when C′ = C,

S ∗ = ∅.
Input: S , the set to minimize.

Input: C, the collection of sets against which S is minimized.

1 Ce ← {C | C ∈ C ∧ e ∈ C} are those sets in C that contain e.

2 S ∗ ← ∅

3 while S , ∅ ∧ C , ∅ do

// Greedily pick an element that most differentiates S .

4 e := CHOOSE({x ∈ S | |Cx| ≤ |Cy|,∀y ∈ S })

5 if Ce = ∅ ∨ Ce = C then

6 Ce = ∅ ∨ Ce = C

7 break

8 S ∗ := S ∗ ∪ {e}

9 S := S \ {e}

10 C := Ce

11 return S ∗,C

Theorem 4.2.2 Consider MINSET(S ,C) = S ∗,C′. The S ∗ that Algorithm 11 computes

distinguishes S from a subset of C; when C′ = ∅, S ∗ is a locally minimal distinguishing

subset of S .

Proof 2 By induction on S ∗.

The worst case time complexity of MINSET(S ,C) is O(|S |2|C|). First, there are |S |

iterations and, in each call, for each element x ∈ S , we need to, 1) compute Cx, each

at a cost of |C|, for a total cost of O(|S ||C|), then 2) then find the minimum |Cx| at a

cost of O(|S |). Of course, S and C are smaller in each iteration, but we ignore this and

74

www.manaraa.com

{ a b e }

{ a c }

{ b c d }

{ a d e } Ce=1

Cb=1

Ca=2

b

{ a e } { b c d }
Ce=0

Ca=0

{ a }

{ }

{ }

{ }
Minset

eb

eb

{ a b e }

{ a c }

{ b c d }

{ a d e }

{ }

Figure 4.3. The execution of Algorithm 11 illustrated on the following problem in-
stance: MINSET({a, b, e}, {{a, c}, {b, c, d}, {a, d, e}}).

over-approximate. Thus, we have O(|S |(|S ||C| + |S |)) = O(|S |2|C|).

As mentioned earlier, modeling functions as sets discards differences in methods due

to multiplicity. We have also developed a multi-set version of the MINSET algorithm,

which we omit due to lack of space.

4.3 Setup and Implementation

We selected a very popular, modern programming language, Java, and collected a large

(100M lines of code), diverse corpus of real-world projects. Ignoring scaffolding and

very simple methods, which we define as those containing fewer than 50 tokens, there

are 1, 870, 905 distinct methods in our corpus. We selected a simple random sample of

75

www.manaraa.com

Table 4.1. Corpus summary.

Repository Projects Files Lines of Code

Apache 103 101,480 10,891,228

Eclipse 102 287,669 32,770,246

Github 170 133,793 13,752,295

Sourceforge 533 373,556 42,434,029

Total 908 896,498 99,847,798

10, 000 methods2. Our software and data is available online3.

4.3.1 Code Corpus

We downloaded almost one thousand of the most popular projects from four widely-

used open source code repositories: Apache, Eclipse, Github, and Sourceforge.

Curation Since some projects in our corpus are hosted in multiple code repositories,

we removed all but the most recent copy of each project. Also, since many project fold-

ers contained earlier or alternative versions of the same project, and even other projects,

where we could, we identified the main project and kept only its most current version.

Table 4.1 summarizes our curated corpus. After curation, clones still existed in the cor-

pus, for example, within projects. A search program we wrote helps us find clones.

When we compute minsets, we assume no clones remain. Our results in Section 4.4.1

give us confidence that this is the case.

Filtering Scaffolding Methods Java, in particular, requires that a programmer write

many short scaffolding methods, for example, getters and setters. Many languages, like

Ruby and Python, eliminate the need for such scaffolding code. After manual inspection,

we found that such methods usually contain less than 50 tokens, or about 5 lines of

code. This is consistent with other research [Li et al., 2004, Basit and Jarzabek, 2007]

that also ignores shorter methods. At this size, we also filter methods with very simple

2Given the population size, this sample size gives us a confidence level of 95%, and a margin of error
of ±1% in our measures.

3https://bitbucket.org/martinvelez/code_essence_dev/downloads.

76

https://bitbucket.org/martinvelez/code_essence_dev/downloads

www.manaraa.com

Table 4.2. Method counts.

Methods Count

Total (in corpus) 8, 918, 575

Unique 8, 135, 663

Unique (50 or more tokens) 1, 870, 905

Unique (50 to 562 tokens) 1, 801, 370

functionality. After filtering, 905 out of 908 projects are still represented. Table 4.2

shows the method counts.

4.3.2 The Feature Extractor

We developed a tool, which we call JavaFE, that processes all the functions in our

corpus. JavaFE leverages the Eclipse JDT parser which parses Java code and builds

the syntax tree4. JavaFE can take as input .java, .class, and .jar files. Projects can

contain these and other types of files. The tool builds a list of tokens for each method.

It collects the lexeme of each token and additional information as it traverses the syntax

tree.

To address the homonym problem, JavaFE collects the fully qualified method name

(FQMN) for method name lexemes, and the fully qualified type name (FQTN) for vari-

able identifiers and type identifiers. Collecting this information allows us later to classify

methods and types based whether they are part of the Java SDK library or if they are

local to specific projects. When projects are missing dependencies, resolving names to

either FQMN or FQTN may not be possible. In our corpus, we encountered this problem

with 0.03% of the tokens. JavaFE can also collect more abstract information like lexer

token types as defined in the javac implementation of OpenJDK, an open-source Java

platform [Oracle, 2012].

4http://www.eclipse.org/jdt/.

77

http://www.eclipse.org/jdt/

www.manaraa.com

Table 4.3. Lexicons.

Name Description Size (words)

LEX All (raw) lexemes 5,611,561

LTT All lexer token types 101

MIN1 Fully qualified standard library method names 55,543

and basic operators 55,543

MIN2 MIN1 plus control keywords 55,556

MIN3 MIN2 plus fully qualified public type names 91,816

MIN4 MIN3 plus additional keyword and token types 91,829

Min
Mean
Median
Max
Mode

12
42.6

35
4004

28

0
10

00
20

00
30

00

0 1000 2000 3000 4000
Method Size (Threshed)

C
ou

nt

Min
Mean
Median
Max
Mode

1
1.6

1
6
1

0
20

00
40

00
60

00

0 2 4 6 8
Minset Size

10000 Random Sample Methods (LEX)

Min
Mean
Median
Max
Mode

2e−04
0.046
0.037
0.333
0.071

0
40

0
80

0
12

00

0.0 0.1 0.2 0.3 0.4
Minset Ratio

Figure 4.4. The histogram of minset sizes tells us that minsets are small. Comparing
minset sizes with method sizes shows that minsets are also relatively small. The minset
ratio histogram confirms this.

4.3.3 The MINSET Algorithm Implementation

All the information collected by JavaFE is stored in a PostgreSQL database. We de-

veloped a Ruby program that runs the MINSET algorithm for each method and stores

the result in the same database. If a method does not have a minset, it stores a list

of its strict supersets, and a list of methods that are duplicates when represented as a

bag-of-words.

4.4 Results and Analysis

We provide quantitative and qualitative results for the following questions:

1. How many units of code are lexically distinguishable?

78

www.manaraa.com

D
is

tin
gu

is
ha

bl
e

(9
1.

62
%

)

N
on

−
D

is
tin

gu
is

ha
bl

e
(9

9.
13

%
)

0
25

00
50

00
75

00
10

00
0

LEX LTT
Lexicon

C
ou

nt
Have_minset
Do_not_have_minset

H
av

e
M

in
se

t (
91

.6
2%

)

D
o

N
ot

 H
av

e
M

in
se

t (
99

.1
3%

)

0
25

00
50

00
75

00
10

00
0

LEX LTT
Lexicon

Have_duplicates
Do_not_have_duplicates

Figure 4.5. Random Sample of 10, 000 Methods: (left) Proportion of Methods with
Minsets: There is a stark difference in that proportion between LEX and LTT. (right)
Proportion of Methods with Duplicates: LEX induces very few duplicates compared to
LTT. LTT maps almost three quarters of the methods to the same set as another. It is
too coarse, and does not model methods well.

2. How much of code is needed to distinguish it?

3. To what extent do minsets also capture code behavior and behavior differences?

4. What is a natural, minimal lexicon?

Measures2 We define the yield of a lexicon to be the percentage of distinguishable

methods in our corpus. The second question can be addressed in terms of absolute min-

set size, or in terms of minset ratio, minset size to threshed method size. While minset

sizes and minset ratios will almost undoubtedly vary across functions, we hypothesize

that the mean minset size and the mean minset ratio are small.

Lexicons We provide results over 6 different lexicons, listed in Table 4.3. LEX and LTT

79

www.manaraa.com

Table 4.4. Types of lexemes (or words) in the minsets we computed over the lexicon
LEX.

Grain Type Count Examples

Variable Identifier (of Public Type) 3235 abilityType (java.lang.StringBuffer), defaultValue (int), lostCandidate (boolean), twinsItem (java.util.List)

String and Character Literal 3202 ‘\u203F’, ‘&’, "192.168.1.36", "audit.pdf", "Error: 3", "Joda", "Record Found", "secret4"

Method Call (Local) 2942 classNameForCode, getInstanceProperty, isUserDefaultAdmin, makeDir, shouldAutoComplete

Variable Identifier (of Local Type) 1574 arcTgt, component, iVRPlayPropertiesTab, nestedException, this_TemplateCS_1, wordFSA

Type Identifier (a Local Type) 1413 ErrorApplication, IWorkspaceRoot, Literals, NNSingleElectron, PickObject, TrainingComparator

Method Call (a Public Method) 508 currentTimeMillis (java.lang.System.currentTimeMillis()), replace (java.lang.String.replace(char,char))

Number Literal (integer, float, etc.) 310 0, 1, 3, 150, 2010, 0xD0, 0x017E, 0x7bcdef42, 255.0f, 0x1000000000041L, 46.666667

Type Identifier (a Public Type) 265 int, ArrayList, Collection, IllegalArgumentException, PropertyChangeSupport, SimpleDateFormat

Operator 260 ^=, <, <<=, <=, =, ==, >, >=, >>, >>=, >>>=, |, |=, ||, -, -=, –, !, !=, ?, /, /=, @, *, &, &&, +, +=, ++

Keyword (Except Types) 196 break, catch, do, else, extends, final, finally, for, instanceof, new, return, super, synchronized, this, try, while

Separator 148 <, >, ", ", .,]

Reserved Words (Literals) 104 false, null, true

Other 112 COLUMNNAME_PostingType, E, ec2, element, ModelType, org, T, TC

are the lexicons we discussed in Section 4.2.2. MIN1- MIN4 are lexicons we explore in

the search for a natural, minimal lexicon.

Summary Code is lexically distinguishable. Perhaps just as importantly, only 1.56

words, on average, or just 4%, are needed to distinguish a unit of code from all others

in the corpus over LEX. The problem with minsets over LEX is that they do no capture

behavior and behavior differences well. Over MIN4, on the other hand, minsets are still

small but reveal much more about the behavior of the code because we intentionally

blurred lexical differences which we suspect do not distinguish behavior. We elaborate

on this point in Section 4.4.3 and Section 4.4.5.

All of our data and data processing code can be downloaded from Bitbucket.3

4.4.1 Lexical Distinguishability of Source Code

The question “How much of a piece of code is needed to distinguish it from others?”

can be answered in two ways: in terms of minset size and minset ratio. We report both.

There are two natural views we can take of code: the raw sequence of lexemes the

programmer sees when writing and reading code, and the abstract sequence of tokens

the compiler sees in parsing code. We want to explore those two views, and capture

each one as a lexicon, a set of words. LEX is the set of all lexemes found in code

(5, 611, 561 words). LTT is the set of lexer token types defined by the compiler (101

words). Each word in LTT is an abstraction of a lexeme, like 3 into INTLIT.

80

www.manaraa.com

LEX LEX is the primordial lexicon; all others are abstractions of its words. Unfor-

tunately, it is noisy: it is sensitive to any syntactic differences, including typos or use

of synonyms, so it tends to overstate the number of minsets and understate their sizes;

spurious homonyms can have the opposite effect, but are unlikely in Java when one can

employ fully qualified names. LTT is the minimal lexicon a parser needs to determine

whether or not a string is in a language. We computed minsets of all the methods in

our random sample of 10, 000 using each lexicon, and display a summary of our results

in Figure 4.4 and Figure 4.5.

Using LEX, a tiny proportion of code is needed to distinguish it. The minset of a

method, on average, contains 4.57% of the unique lexemes in a method which means

that methods in Java contain a significant amount of chaff, 95.43% on average. More

surprisingly, the number of lexemes in a minset is also just plain small. The mean minset

size is 1.55. The minset sizes also do not vary much. In 85.62% of the methods, one or

two unique lexemes suffices to distinguish the code from all others. The largest minset

consists of only 6 lexemes. Minset ratios also do not vary much. 75% of all methods have

a minset ratio of 6.35% or smaller. While the ratios are sometimes large, the absolute

sizes never are. The method with the largest minset ratio, 33.3%, for example, consists

of 18 unique lexemes but has a minset size of 6. The method with the second largest

minset ratio, 29.41%, another example, consists of 17 unique lexemes and has a minset

size of 5.

Minset Sizes of Large Methods Minsets are surprisingly small; especially surprising

is that the maximum size is small. One reason might be the compression inherent to

representing functions as sets. We address this later when we experiment with multi-

sets. To test the robustness of our results, we also focused our investigation on larger

methods because they may encode more behavior and therefore have more information.

Hence, they may have larger minsets. Selected uniformly at random, our sample set

does not include many of the largest methods: the largest method in our random sample

has 2025 lines of code while the largest one in our corpus contains 4, 606 lines of code. To

answer this question about minset properties conditioned on large methods, we selected

81

www.manaraa.com

the 1, 000 largest methods, by lines of source code, and computed their minsets. The

mean and maximum minset sizes of the largest methods are slightly lower but similar

to the previous sample, 1.12 and 4, respectively. This shows that minsets are small and

potentially effective indices of unique information even for abnormally large methods.

LTT Using LTT, the proportion of words needed to distinguish code is larger but

still small. The minset of a method, on average, contains 18.45% of the unique token

types in a method. We observe again that sometimes minset ratios can be large but

the absolute minsets sizes never are. It is not surprising that the minset ratio is larger.

Information is lost in mapping millions of distinct lexemes to only 101 distinct lexer

token types. Information is also lost as method sizes decrease from 42.7 using LEX to

18.2 using LTT.

These results show that few words are needed to distinguish code, in relative and

absolute terms. Given that we preserve a lot of information with LEX, we claim that the

mean minset size, and mean minset ratios we found are approximate lower bounds. In

essence, we define a lexicon spectrum where LEX is one of the poles, and LTT is a more

abstract point on the lexicon spectrum.

Yield The yield of a lexicon is the percentage of distinguishable methods. Our explo-

ration shows that the yield decreases as the lexicon becomes coarser, measured roughly

by the number of words in the lexicon. Our coarsest lexicon, LTT, blurs lexical dif-

ferences too much. Over LTT, only 87 out of 10, 000, 0.87%, methods have a minset.

This is in great part due to the fact that LTT induces many duplicates. Over LTT, 6, 640

out of 10, 000 are modeled to the same bag-of-words as another method in the corpus.

Recall that all of these methods are unique at the source code level. In contrast, LEX

appears to preserve sufficient lexical differences so that 9, 087 out of 10, 000 methods

have a minset.

4.4.2 Minsets over LEX

Since there are thousands of minsets, we take a broad view of minsets. For all minsets,

we partitioned lexemes by type, leveraging information collected JavaFE; the types we

defined are similar to lexer token types but broader in some cases and narrower in

82

www.manaraa.com

others. We provide a list of the lexeme types we defined, along with the counts of

lexemes belonging to that type in Table 4.45.

Public type variable identifiers, and string and character literals dominate minsets.

String literals are constant string values like "Joda". The strings can represent error or

information messages, IP addresses, names, pretty much anything. Perhaps this is why

are at the top of the list: they can be unique or very rare. We divide certain classes of

words depending if they are public or local — method invocations, type identifiers, and

variable names. Public words are more standard and common whereas local words are

more specialized and rare. Not surprisingly then, we observe that standard language

features, like keywords and operators, and public types and methods are less common

in minsets. The only exception is variable identifiers of types local to their respective

project. Their distinctiveness is due in part to synonyms and homonyms. A programmer

has great freedom in creating them. For example, dir appears 8017 times, as a variable

name in methods, while directory appears only 2774 times. Another reason is that

variable identifiers are more prevalent than other type of identifiers, like types and

method calls.

4.4.3 What is a Natural, Minimal Lexicon?

We have shown that a method can be uniquely reduced to and thus uniquely identified

by a small minset over LEX and LTT. However, LTT is too coarse. Token types as are

too abstract. LEX preserves lexical differences. The existence of minsets over LEX can

be of practical use in applications like Code Search. The problem with minsets over LEX

is that they do not capture behavior and behavior differences well. Raw lexemes are

too specific and cryptic.

Goal We set the goal of finding a lexicon that is minimal, as small as possible, and

natural, consisting of words that a human would know and use in applications like code

search and code synthesis. The words in this lexicon should be meaningful, in the sense

that they reveal information about the behavior of the code to us, humans. Since a

5A caveat: Algorithm 11 at line 4 picks arbitrarily between two equally rare words. Thus, these counts
could differ.

83

www.manaraa.com

●

●

●

●

●●●●

inner fence
outer fence
mild outlier
mean

0
30

60
90

12
0

MIN1 MIN2 MIN3 MIN4
Lexicon

M
et

ho
d

S
iz

e

●
● ●

●

0
3

6
9

12

MIN1 MIN2 MIN3 MIN4
Lexicon

M
in

se
t S

iz
e

Figure 4.6. (left) As the lexicon grows from MIN1 to MIN4, the average size of the
threshed methods also grows. (right) As the lexicon grows, the average minset size
hardly changes. At least three quarters of the methods have a minset smaller than 4.
Even as the lexicon grows, the maximum minset size is never more than 10.

MINSET is, by definition, distinguishing, we then expect minsets to capture behavior

and behavior differences of a piece of code.

Strategy We search by exploring the lexicon spectrum toward more abstract views

of code. We additively construct a bag of words that approximates what a programmer

might naturally use in applications like code search and code synthesis.

Challenges Two issues confounds this search: lexicon specialization can overfit while

lexicon abstraction introduces imprecision. To ameliorate overfitting, we restricted our

search to natural lexicons. By natural, we mean simple and intuitive. We pursue natural

abstractions to avoid unnatural abstractions that overfit our corpus, like one that maps

every function in our corpus to a unique meaningless word. In our context, imprecision

84

www.manaraa.com

N
on

−
D

is
tin

gu
is

ha
bl

e
(7

3.
07

%
)

N
on

−
D

is
tin

gu
is

ha
bl

e
(7

0.
27

%
)

N
on

−
D

is
tin

gu
is

ha
bl

e
(5

8.
56

%
)

N
on

−
D

is
tin

gu
is

ha
bl

e
(5

5.
21

%
)

0
25

00
50

00
75

00
10

00
0

MIN1 MIN2 MIN3 MIN4
Lexicon

C
ou

nt
Have_more_than_10_supersets

Have_10_or_fewer_supersets

Have_minsets

D
o

N
ot

 H
av

e
M

in
se

t (
85

.5
2%

)

D
o

N
ot

 H
av

e
M

in
se

t (
83

.9
8%

)

D
o

N
ot

 H
av

e
M

in
se

t (
76

.1
5%

)

D
o

N
ot

 H
av

e
M

in
se

t (
74

.0
8%

)

0
25

00
50

00
75

00
10

00
0

MIN1 MIN2 MIN3 MIN4
Lexicon

Do_not_have_duplicates

Have_duplicates

Figure 4.7. (left) Yield: The yield clearly improves with each change. At MIN4, the
yield is 44.79%. (right) Proportion of Methods With Duplicates: Using this proportion as
a rough gauge of threshing precision, there is a substantial improvement in threshing
precision with each lexicon — fewer methods have duplicates. MIN4 pushes that
precision past 50%.

leads spurious homonyms which reduces yield6. To handle this problem, we relax the

definition of distinguishability (Definition 4.4.1). Henceforth, when we say distinguish-

able we mean 10-distinguishable. We chose 10 because that is consistent with what

humans can process in a glance or two. Humans can rapidly process short lists [Miller,

1956].

Definition 4.4.1 A unit of code is lexically k-distinguishable if it does not have distin-

guishing subset but has 10 or fewer supersets.

We considered four candidates, lexicons. We listed and introduced them briefly in

6Although LEX is rife with synonyms, our candidate lexicons have almost none.

85

www.manaraa.com

Table 4.3. Our results appear in Figure 4.6 and Figure 4.7. We report absolute minset

sizes. In searching or synthesizing code using minsets, the minset size is likely more

important to the programmer than the minset ratio. We also report yield, the proportion

of distinguishable methods. The yield approximates the likelihood of success for the

programmer given that lexicon in the context of some code search or code synthesis

application, Broadly, it gives us a sense of the potential practical usefulness of a lexicon.

MIN1 First, we considered MIN1, a lexicon including only method names and op-

erators. For public API methods, we used fully qualified method names to prevent the

spurious creation of homonyms. For local methods, we abstracted all names to a single

abstract word to capture their presence. Local methods tend to implement project-

specific functionality not provided by the public API, and are not generally aimed for

general use. The intuition in including method names is that a lot of the semantics is

captured in method calls. They are the verbs or action words of program sentences. Our

intuition is further supported by the effectiveness of API birthmarking [Schuler et al.,

2007]. We also included operators because all primitive program semantics are appli-

cations of operators. Using this lexicon, the mean and maximum minset sizes are small,

2.73 and 7, respectively. The imprecision of MIN1 manifests itself in the low yield of

26.86%.

MIN2 To try to improve yield, we created lexicon MIN2 by including control flow

keywords as well; there are 13 in Java. From the programmer’s perspective, these words

reveal a great deal about the structure of a method that is critical to semantics. For

example, the word for alone immediately tells us that some behavior is repeated. Using

this lexicon, the mean and maximum minset sizes are still small, 2.88 and 9, respectively.

The yield does not increase much. Only an additional 288 methods become threshable.

The likeliest and simplest explanation for the small change is that these words are very

common; at least one of them is present in 83.26% of the methods. It is more difficult to

interpret this change. On the one hand, it is small. On the other hand, it is the result of

adding only 13 new, semantically-rich words. In balancing the size of lexicon with the

interpretability of minsets, this appears to be a good trade-off.

86

www.manaraa.com

MIN3 In our quest to improve yield, we defined MIN3 to include the types of variable

identifiers (names). Those of a public type were mapped to their fully qualified type

name. Those of a locally-defined type were mapped to a single abstract word to signal

their presence. Locally-defined types, like local methods, tend to be project-specific and

not of general use. Our reason for focusing on types is that they tell the programmer the

kind of data on which methods and operators act. It is also a simple way of considering

variable identifiers. Again, the mean and maximum minset size are small, 2.96 and 9,

respectively. There is a notable increase in the yield, from 29.72% to 41.44%. It is now

close to what we would imagine might be practical. In a MINSET-based application, a

programmer would succeed 4 out of 10 times. Though, the lexicon grew substantially

by 36, 260 words. This trade-off appears reasonable considering as well that it is natural

to supply the programmer with the convenience of a variety of primitive and composite

types.

MIN4 We defined a final lexicon, MIN4, which includes false, true, and null, object

reference keywords, like this and new, and the token types of constant values, such

as the token type Character-Literal for ‘Z’ or, for 5, Integer-Literal. In total, we

added 13 new words. Our intuition is that the use of hard-coded strings and numbers

is connected to behavior. Certainly, knowing that hard-coded values are used can be

informative. Also, in an application, a programmer may need to indicate that some

constant string or number will be used. For example, if the programmer wishes to

find a method that calculates the area of a circle, then it would be natural to indicate

that target method likely contains a float literal like 3.14. After including these words,

the mean and maximum minset size remain small, 3.06 and 10, respectively. The yield

increased from 41.44% to 44.79%. Adding this small number of semantically-rich words

to the lexicon seems to be another reasonable exchange for a noticeable gain in yield:

under this lexicon, the words are easier to interpret (see Section 4.4.5 for our analysis

of the interpretability of minsets built from these words) while remaining small enough

for humans to work with, e.g. a human could potentially write a minset from scratch

while programming using key words [Little and Miller, 2007].

87

www.manaraa.com

●

●

●

●

●●●●

inner fence
outer fence
mild outlier
mean

0
10

0
20

0
30

0
40

0

MIN1 MIN2 MIN3 MIN4
Lexicon

M
et

ho
d

S
iz

e

● ●

●
●

0
10

20
30

40

MIN1 MIN2 MIN3 MIN4
Lexicon

M
in

se
t S

iz
e

Figure 4.8. Multiplicity: (left) Like in Figure 4.6, as the lexicon grows, so does the
threshed method size. In this case, methods are much larger because repetition is
allowed. (right) The minset sizes, allowing repetition, are evidently larger. However,
on average, they are still small across all lexicons. (To visualize both distributions, we
omitted extreme outliers.8)

4.4.4 The Effect of Multiplicity and Abnormally Large Methods on

Distinguishability

Instead of continuing our search for lexicons generated from ever more complex ab-

stractions over lexemes, we reconsidered multiplicity, the number of copies of a word

in a method. We hypothesized that modeling methods as multi-sets would recapture

some lexical differences, and thereby increase the yield of the lexicons MIN1 through

MIN4. We used the multi-set version of Algorithm 11 to recompute minsets, and show

our results in Figure 4.8.

Multiplicity improved yield at the cost of larger absolute minset sizes. The yield

8A point is an extreme outlier if it lies beyond Q3 + 3 ∗ IQ or below Q1 − 3 ∗ IQ, where IQ = Q3 − Q1.

88

www.manaraa.com

N
on

−
D

is
tin

gu
is

ha
bl

e
(6

7.
36

%
)

N
on

−
D

is
tin

gu
is

ha
bl

e
(6

4.
18

%
)

D
is

tin
gu

is
ha

bl
e

(4
9.

38
%

)

D
is

tin
gu

is
ha

bl
e

(5
3.

63
%

)

0
25

00
50

00
75

00
10

00
0

MIN1 MIN2 MIN3 MIN4
Lexicon

C
ou

nt
Have_more_than_10_supersets

Have_10_or_fewer_supersets

Have_minsets

D
o

N
ot

 H
av

e
M

in
se

t (
81

.2
2%

)

D
o

N
ot

 H
av

e
M

in
se

t (
78

.9
8%

)

D
o

N
ot

 H
av

e
M

in
se

t (
69

.5
3%

)

D
o

N
ot

 H
av

e
M

in
se

t (
66

.5
9%

)

0
25

00
50

00
75

00
10

00
0

MIN1 MIN2 MIN3 MIN4
Lexicon

Do_not_have_duplicates

Have_duplicates

Figure 4.9. Multiplicity: (left) Yield: Multiplicity improves the yield of all lexicons.
The yield of MIN4 now exceeds 50%. (right) Proportion of Methods With Duplicates:
Using this proportion as a rough measure of threshing, multiplicity also improves the
threshing precision of each lexicon. Less than 25% of the methods have duplicates
using MIN4. (Note: Compare with Figure 4.7.)

increased for all lexicons. The new yields ranged from 32.64%–53.63%. The smallest

increase in yield was using MIN1 (3.18%) and the largest was using MIN4 (8.84%).

More concretely, using MIN4, the number of distinguishable methods increased by 884.

Multiplicity also improved the minset ratios over all lexicons. For example, using MIN4,

the mean minset ratio decreased from 15.47% to 5.35%. The cost of considering mul-

tiplicity, however, was an overall increase in minset sizes; the range of mean minset

sizes shifted, 2.73–3.06, shifted and got a bit wider, 7.06–9.56. The outliers of minset

sizes moved farther to the right. Previously, they ranged from 7–10 and now they range

from 258–438. The right tails have grown longer. For example, using MIN4, 75.67% of

the minsets have fewer than 10 words. Another cost of the gain in yield was in minset

89

www.manaraa.com

computation where we observed an approximate slowdown factor ranging from 4 to 7.

For example, computing multi-set minsets using MIN1 took 44 hours instead of 6. In

practice, the slowdown is much better than Algorithm 11’s complexity implies. Over-

all, despite its cost, modeling methods as multi-sets over MIN4 produces a yield with

practical value: it easily distinguishes more than half of the methods in our sample set.

Multiplicity appears to also improve the how well the bag-of-words preserves lexical

differences. Modeling a method as a bag-of-words can map two unique methods to the

same set or multi-set. When this happens, the MINSET algorithm cannot distinguish

them. We can use the proportion of methods with duplicates to gauge the precision of

the bag-of-words model. LEX gave us a baseline of 3.20%. When we experimented with

lexicons MIN1 through MIN4 and no multiplicity, we observed the portion improved

from 66.4% using MIN1 down to 41.64% using MIN4 (Figure 4.9). Multiplicity cut

those figures nearly in half. For example, using MIN4, the proportion of methods with

duplicates is only 23.59%.

The remaining portion of non-distinguishable methods is still intriguing. There are

still 46.37% non-distinguishable methods, entirely subsumed by more than 10 other

methods. We certainly expected some methods to subsume others because of their sheer

size. We also expected families of methods with similar behavior where some subsume

others. However, given that methods are not that small, containing, on average, 72.8

words over MIN4, and that the the portion of methods with duplicates is small, we

suspected another reason. We hypothesized that there are abnormally large methods

subsuming a great number of methods.

We conducted an experiment where we gradually filtered large methods to observe

the effect on yield (Figure 4.10); we can perform this experiment without recomputing

minsets. We initialized the filter size to 72, 028, the maximum method size (in tokens)

in our corpus, and repeatedly halved it down to 70; the miminum size of a method is 50.

Yield increases as the maximum method size filter is tuned down to 562. That appears to

be the “sweet spot.” If we filter methods with more than 562 tokens, or about 56 lines of

code, then the yield improves from 53.67% to 61.74%. In an application that implements

90

www.manaraa.com

Y
ie

ld
 (

53
.6

3%
)

Y
ie

ld
 (

53
.6

3%
)

Y
ie

ld
 (

53
.6

3%
)

Y
ie

ld
 (

53
.7

0%
)

Y
ie

ld
 (

54
.0

1%
)

Y
ie

ld
 (

54
.9

9%
)

Y
ie

ld
 (

57
.3

2%
)

Y
ie

ld
 (

61
.7

4%
)

Y
ie

ld
 (

67
.1

0%
)

Y
ie

ld
 (

73
.0

3%
)

79
.6

8%

0
25

00
50

00
75

00
10

00
0

72028 36104 18007 9003 4501 2250 1125 562 281 140 70
Maximum Method Size

C
ou

nt
Have_more_than_10_supersets Have_10_or_fewer_supersets Have_minsets

Figure 4.10. Yield, the percentage of distinguishable methods, increases as the max-
imum method size filter is tuned down to 562. From there, the number of methods
and the number of threshable methods decreases substantially. Thus, setting the filter
at 562 seems appropriate.

this filter would means that, a user would succeed 6 out of 10 times. For example, in

a code search application, the likelihood of success of finding (recalling) a method

would be improved if the application did not consider abnormally large methods. If

we doubled the filter size to 1125, we would reconsider 55, 953 methods, and the yield

would still be higher at 57.32% than without the filter. Since there is a relatively low

number of these large methods, 69, 535 out of 1, 870, 905 (or 3.7%), the trade-off seems

reasonable. A maximum size filter would clearly add practical value to a MINSET-based

application.

MIN4 is a natural lexicon suited for code search, synthesis, and robust programming.

We recomputed minsets using MIN4 considering multiplicity and a filter size 562. As we

already mentioned, the yield is 61.74%. The mean minset size increases with the filter

91

www.manaraa.com

from 9.56 to 11.03. The minset sizes vary but have a clear positive skew where fewer

than 25% contain more than 12 words. That right tail of the distribution is significantly

shorter; the maximum size decreased from 689 to 173 because of the filter.

4.4.5 Minset Over MIN4

Minsets computed over LEX are small but do not capture behavior well. Minsets over

MIN4 are still small; a few words are needed to distinguish a unit of code. To what

extent do minsets over MIN4 capture behavior and behavior differences amongst methods?

We provide a qualitative answer to this question via case studies: Minsets over MIN4

give insight into the behavior of a method.

We studied the minsets produced in our last experiment in Section 4.4.4. We se-

lected nine minsets (Figure 4.11); we partitioned the methods into low, medium, and

high minset ratios and picked three uniformly at random from each subset. For each

minset, we tried to understand each element and what they revealed together about

the behavior of a method. Then we inspected the method source code more carefully

to assess how well the minsets capture method functionality. Due to lack of space, we

discuss only three in detail.

Low: L1 The method named javax.xml.bind.Unmarshaller.unmarshal from (java.-

xml.transform.Source) de-serializes XML documents and returns a Java content tree

object; java.awt.Image is an abstract classes that represents graphical images. From

this minset, we infer that this method handles images and XML files. Since it reads the

XML file, we also infer that it uses XML data in some manner. Perhaps the file contains

a list of images, or the data in the file is used to create or alter an image. After in-

specting the source code, we find that it is a method in the LargeInlineBinaryTestCases

class of the Eclipse Link project, which manages XML files and other data stores. Our

understanding was not far off: the method does read a binary XML file that contains

images.

Medium: M1 The java.lang.Class.isInstance(java.lang.Object) method checks if a

given object is an object of type Class or assignment-compatible with its calling object.

92

www.manaraa.com

Java.awt.ImageL1
javax.xml.bind.Unmarshaller.unmarshal(javax.xml.

transform.Source)

L2
javax.swing.DefaultBoundedRangeModel2Test.checkValues(javax.swin

g.BoundedRangeModel,int,int,int,int,boolean)

L3 / java.text.Bidi.getRunLevel(int)

M1 java.lang.Class.isInstance(java.lang.Object) java.sql.Date.toString()

M2
java.security.AccessController.<java.lang.
Object>doPrivileged(java.security.Privile

gedAction<java.lang.Object>)

javax.security.auth.Policy.getPermiss
ions(javax.security.auth.Subject,java.

security.CodeSource)

M3 @ java.sql.PreparedStatement.setByte(int,byte)

H1 java.lang.Exception
java.security.Security.addPro
vider(java.security.Provider)

super

H2 boolean
java.lang.Object.equals

(java.lang.Object)
org.eclipse.linuxtools.tmf.core.trace.

TmfExperiment<LTYPE>

H3
com.sun.javadoc.

ClassDoc
java.lang.String[]

java.lang.String.equals(
java.lang.Object)

3

3

2.53%

2.04%

4.55%

12.5%

12.5%

12.5%

23.8%

27.8%

31.3%

RatioMinSet (MIN4)ID

= 2

Figure 4.11. This shows the minsets of nine methods (MIN4). L1-L3 are minsets that
have low minset ratios. M1-M3 have medium minset ratios. H1-H3 have high minset
ratios. The minset elements are rich and reveal some information about the behavior
of their respective methods.

The java.sql.Date. toString()method converts a Date object, which has been wrapped

as an SQL date value, to a String. From this minset, we understand the type of a variable

is checked. Perhaps, reflection is used on an object to ensure it is an instance of type

Date before it converted to a string, for printing or storage. Inspecting the source code

we find that this method resides in the DateType class of the Hibernate ORM project.

Again, our understanding is very close to the behavior of the method. The method is

passed an object, which it ensures is a java.sql.Date class object, and then returns the

value as a string in the appropriate SQL dialect.

High: H1 The java.lang.Exception object is thrown in Java to indicate abnormal flow

or behavior. The = operator tells us that there is an assignment but is very common. The

93

www.manaraa.com

java.security.Security.addProvider(java.security.Provider)method adds a security

service object, Provider, to a Security object. The Security object centralizes all the

security properties in an application. The super keyword refers to the superclass. From

this minset, we can infer that it describes a constructor that probably overrides a method

in its superclass. We also infer that it catches an exception when adding the provider

fails. In the source, we confirm that it is a constructor in the HsqlSocketFactorySecure

class in the CloverETL project. It wraps code that instantiates a Provider class and

adds it to the Security object in a try block. If adding the provider fails, it catches the

exception, as we had inferred.

4.5 Discussion

Our results clearly support our Wheat and Chaff Hypothesis. We have shown, over a

variety of lexicons, that functions are lexically distinguishable, and that the distinguish-

ing subsets tend to be small. We defined and analyzed four lexicons in search for a

natural, minimal lexicon that induces more meaningful minsets. We offered MIN4 as

the promising candidate.

Other Lexicons Our lexicon exploration avoided variable names because they are so

unconstrained, noisy, and rife with homonyms and synonyms. Minsets over lexicons,

like LEX, that incorporated them could include trivial, semantically insignificant differ-

ences, like “user” vs. “usr” in Unix. At the same time, variable names are an alluring

source of signal. Intuitively, and in this corpus, they are the largest class of identifiers,

which comprise 70% of source code [Deißenböck and Pizka, 2005], and connect a pro-

gram’s source to its problem domain [Binkley et al., 2013]. In future work, we plan to

separate the “wheat from the chaff” in variable names.

Alternative Units of Code We chose functions as our unit of code. However, we

can apply the same methodology at other syntactic levels. One alternative is to study

blocks of code. A single function can have many blocks. This could be very useful in

an alternative programming model where the user seeks a common block of code but

for which there is no individual function. Another alternative is to use abstract syntax

94

www.manaraa.com

trees (AST) to preserve some syntactic structure in the lexical features. We could also

consider using n-grams to preserve some order in the features.

Threats to Validity We identify two main threats. The first is that we only studied

Java. However, we have no reason to believe that the “wheat and chaff” hypothesis does

not hold for other programming languages. Java, though more modern, was designed

to be very similar to C and C++ so that it could be adopted easily. The second threat

comes from our corpus: size and diversity. We downloaded a very large corpus, by any

standard. In fact, we downloaded all the Java projects listed as “Most Popular” in the

four code repositories we crawled. Those code repositories are known primarily for

hosting open-source projects. Thus, there is no indication that they are biased toward

any specific types of projects. We plan to replicate this study on a larger Java corpus

and with languages of different paradigms like Lisp and Prolog to help us understand

to what extent the lexical distinguishability phenomenon varies and to what extent the

Wheat and Chaff Hypothesis holds.

4.6 Applications

Though our study is primarily empirical, in this section, we describe pre-existing and

new applications for minsets.

SmartSynth (Existing) As mentioned earlier, the clearest and, perhaps, most promis-

ing application for minsets is in keyword-based programming. SmartSynth [Le et al.,

2013] is a recent, modern incarnation. SmartSynth generates a smartphone script from

a natural language description (query). “Speak weather in the morning” is an example

of a successful query. SmartSynth uses NLP techniques to parse the query and map it

to a set of “components” (words) in its underlying programming language. Combining

a variety of techniques, it then infers relationships between the words to generate and

rank candidate scripts. At its heart is the idea that usable code can be constructed from

a small set of words. This subset is a minset or another distinguishing subset.

Code Search Engine (New) A major problem of code search is ranking results [Ba-

jracharya et al., 2006, Mandelin et al., 2005, McMillan et al., 2012]. We built a code

95

www.manaraa.com

search engine that uses a new ranking scheme9. Relevant methods are ranked by the

similarity between their minsets and the user’s query. For example, the query “sort array

int” returns 135 methods. The top result, with minset “sort array parseInt 16”, returns

a sorted array of integers, if the ‘sort’ flag is set.

Code Summarizer (New) From our case studies of MIN4 minsets, we realized that

minsets can effectively summarize code. We built a code summary web application9. A

user enters the source code of a method, our tool computes a minset, and presents it as

a concise summary. Due to space constraints, we omit a full example and invite inter-

ested readers to explore our web application. Figure 4.11 shows examples of minsets

summarizing methods.

MINSET-powered IDE (Concept) Our results offer insight into how to develop a

more powerful, alternative programming system. Consider an integrated development

environment (IDE), like Eclipse or IntelliJ, that can search a MINSET indexed database

of code and requirements to 1) propose related code that may be adapted to purpose,

2) auto-complete whole code fragments as the programmer works, 3) speed concept

location for navigation and debugging, and 4) support traceability by interconnecting

requirements and code [Cleland-Huang et al., 2005].

4.7 Related Work

Although we are the first to study the phenomenon of lexical distinguishability of source

code, and propose the Wheat and Chaff Hypothesis10, a few strands of related work

exist.

Code Uniqueness At a basic level, our study is about uniqueness. What lexical fea-

tures distinguish or uniquely identify a unit of code? Gabel and Su also studied unique-

ness [Gabel and Su, 2010]. They found that software generally lacks uniqueness which

they measure as the proportion of unique, fixed-length token sequences in a software

project. We studied uniqueness differently. We capture uniqueness as the size or pro-

9http://jarvis.cs.ucdavis.edu/code_essence.
10Others have used the “wheat and chaff” analogy in the computing world but in different do-

mains [Rivest, 1998, Schleimer et al., 2003].

96

http://jarvis.cs.ucdavis.edu/code_essence

www.manaraa.com

portion of minsets. The elements in a MINSET may not be unique or even rare but

together uniquely identify a piece of code. We keep in mind that syntactic differences

do not always imply functional differences as Jiang and Su demonstrated [Jiang and

Su, 2009]. Thus, in some cases the uniqueness may be accidental. Two minsets may, in

fact, represent the same behavior at some higher, more abstract semantic level.

Code Completion and Search Observations about natural language phenomenon

provide a promising path toward making programming easier. Hindle et al. focused on

the “naturalness” of software [Hindle et al., 2012]. They showed that actual code is

“regular and predictable”, like natural language utterances. To do so, they trained an

n-gram model on part of a corpus, and then tested it on the rest. They leveraged code

predictability to enhance Eclipse’s code completion tool. Their work followed that of

Gabel and Su who posited and gave supporting evidence that we are approaching a

“singularity”, a point in time where all the small fragments of code we need to write

will already exist [Gabel and Su, 2010]. When that happens, many programming tasks

can be reduced to finding the desired code in a corpus. Our work suggests that small,

natural set of words, i.e., minsets, can index and retrieve code. As for code completion,

a MINSET-based approach could exploit not just the previous n− 1 tokens, but on all the

previous tokens and complete not just the next token but whole pieces of code.

Sourcerer and Portolio, two modern code search engines, support basic term queries,

in addition to more advanced queries [Bajracharya et al., 2006, McMillan et al., 2011].

Our research suggests that the natural and efficient term query is a MINSET. Search

results may differ in granularity. Portfolio focuses on finding functions [McMillan et al.,

2011] while Exemplar, another engine, finds whole applications [Grechanik et al.,

2010], MINSET easily generalizes to arbitrary units of code. Finally, code search must

also be “internet-scale” [Gallardo-Valencia and Elliott Sim, 2009]. With a modest com-

puter, we can compute minsets for corpora of code of various languages, and update

them regularly as new code is added.

Code completion tools suggest code a programmer might want to use. They infer

relevant code and rank it. Many diverse, useful tools and strategies exist [Bruch et al.,

97

www.manaraa.com

2009, Nguyen et al., 2012, Nguyen et al., 2013, Zhang et al., 2012]. Our work suggests

a different, complementary MINSET-based strategy: If what the programmer is coding

contains the MINSET of some existing piece of code, suggest that.

Genetics and Debugging At a high-level, Algorithm 11 isolates a minimal set of es-

sential elements. Central to synthetic biology is the search for the ‘minimal genome’, the

minimal set of genes essential to living organisms [Acevedo-Rocha et al., 2013] [Maniloff,

1996]. Delta debugging is very similar in that it finds a minimal set of lines of code that

trigger a bug [Cleve and Zeller, 2000]. Both approaches rely on an oracle who defines

what is “essential” whereas we define “essentialness” with respect to other sets.

4.8 Conclusion and Future Work

Humans do not read code like compilers, nor do they write code sequentially, lexeme by

lexeme. Nonetheless, current programming paradigms force programmers through the

eye of the needle of syntax. We introduce a novel view of code: discrete semantic units,

like functions, can be separated into ‘wheat’ and ‘chaff’. At a high level, our approach

is a simple attempt to model the complex abstraction mechanism of the programmer’s

mind when reading or writing code.

We imagine that code, to the human mind, is amorphous, and ask: “If a programmer

were reading this code, what features would be semantically important?” and “If a pro-

grammer were trying to write this piece of code, what key ideas would the programmer

communicate?” A MINSET is our proposal of a useful, formal definition of these key

ideas as ‘wheat.’ Our definition is constructive, so a computer can compute Minsets to

generate or retrieve an intended piece of code.

We evaluated Minsets, over a large corpus of real-world Java programs, using vari-

ous, natural lexicons: the computed minsets are sufficiently small and understandable

for use in code search, code completion, and natural programming.

98

www.manaraa.com

Chapter 5

Conclusion

In recent years, we have observed an explosion in demand for a computer science edu-

cation, due in part to the increased demand for software engineers in the labor market.

We are seeing more students enroll in traditional university courses. Many are signing

up for massive open online courses (MOOCs). While others resort to attending coding

boot camps. However, in addition to the known challenges of learning programming,

these students are experiencing new challenges resulting from education at these scales.

There is a need for novel tools and techniques that can help students overcome these

challenges and succeed in learning to program. This dissertation identifies some of

the technical barriers students face in learning to program and presents novel tools,

techniques, and concepts to try to to address and minimize them.

First, we introduced Kodethon, a web integrated development environment. Over

the last few years, thousands of students have used Kodethon to learn to program at

a major U.S. public university. Through user surveys, we learned that Kodethon does

lower the threshold for many students and lets them run and test code right away.

Second, we introduced COMPASSIST, a tool that aims to help programmers, espe-

cially beginners, resolve compilation errors. This is important because, in languages

like C and C++, students cannot run code that does not compile. This can halt their

learning progress completely until they receive peer or instructor aid. COMPASSIST em-

ploys a novel FUZZ-AND-REDUCE that automatically synthesizes repair examples, and,

in the best case, can automatically repair the programmer’s compiler error directly.

99

www.manaraa.com

Lastly, we introduced the Wheat and Chaff Hypothesis, which states that source code

is composed of wheat and chaff and most code is chaff. Informally, we define wheat as

those lexical elements that are necessary for human understanding of a piece of code.

Formally, we define wheat as the MINSET of a piece of code. We tested our hypothesis

empirically over a large corpus of Java methods by analyzing lexical distinguishability.

Our quantitative and qualitative analysis supports our hypothesis. In addition to be-

ing of scientific interest, our results validate recent efforts and encourage more efforts

towards a minimal programming paradigm. By minimal, we mean one where a pro-

grammer writes “wheat” and the computer fills in the “chaff” Such a paradigm would

help students code more easily and focus more on computation problems and solutions.

There are many opportunities for future work stemming from this dissertation. Work

that is already in progress is extending Kodethon with a learning management system

(LMS). In this extended Kodethon, students can seamlessly program in the Kodethon

IDE and submit solutions via the Kodethon LMS. This provides students with a more

seamless learning programming platform. The LMS also gives educators more opportu-

nities to help students, especially those who struggle. For example, through the LMS,

instructors can provide better feedback on programming assignment submissions. The

LMS can visualize test suite results, and, in the future, may even provide suggestions on

how to fix code errors to help students pass failing test cases.

There are also future work opportunities based on COMPASSIST. First, we can try

to improve C++ compiler error coverage. We can also deploy the tool to the public. By

making it public, we can collect broader feedback on the idea and implementation. A

potential sign of success would be whether we can directly integrate COMPASSIST into

a popular integrated development environment, like Visual Studio or Eclipse. Another

potential sign of success would be whether we can contribute repair examples directly

into the source code of compilers, like clang++ and g++. Lastly, we should explore

implementing this concept for compilers of other programming Languages, like Java.

We are living in a technological revolution where software is becoming an integral

part of our lives. There is an increasing demand for more software and for people who

100

www.manaraa.com

can build it and maintain it. This revolution will fundamentally change our education

systems and curriculum. It will require more people to be literate in writing programs.

To get there, we need to rethink our teaching methods and tools. Thankfully, the re-

search community has been very responsive to this phenomenon and we are seeing a

lot of work in the area of computing education. The tools and techniques described in

this dissertation are part of this broader research effort.

101

www.manaraa.com

REFERENCES

[Academy, 2017] Academy, K. (2017). Khan academy.

[Acevedo-Rocha et al., 2013] Acevedo-Rocha, C. G., Fang, G., Schmidt, M., Ussery,
D. W., and Danchin, A. (2013). From essential to persistent genes: a functional
approach to constructing synthetic life. Trends in Genetics, 29(5):273–279.

[Adams, 2014] Adams, J. C. (2014). Computing is the safe stem career choice today.

[Adams, 2016] Adams, J. C. (2016). Us-bls: Computing employment outlook remains
bright.

[Ahmed et al., 2018] Ahmed, U., Kumar, P., Karkare, A., Kar, P., and Gulwani, S.
(2018). Compilation error repair: For the student programs, from the student pro-
grams.

[Altadmri and Brown, 2015] Altadmri, A. and Brown, N. C. (2015). 37 million com-
pilations: Investigating novice programming mistakes in large-scale student data.
In Proceedings of the 46th ACM Technical Symposium on Computer Science Education,
SIGCSE ’15, pages 522–527, New York, NY, USA. ACM.

[Altadmri et al., 2015] Altadmri, A., Brown, N. C., and Kölling, M. (2015). Using bluej
to code java on the raspberry pi. In Proceedings of the 46th ACM Technical Symposium
on Computer Science Education, SIGCSE ’15, pages 178–178, New York, NY, USA.
ACM.

[Bajracharya et al., 2006] Bajracharya, S., Ngo, T., Linstead, E., Dou, Y., Rigor, P.,
Baldi, P., and Lopes, C. (2006). Sourcerer: a search engine for open source code
supporting structure-based search. In Companion to the 21st ACM SIGPLAN Sym-
posium on Object-Oriented Programming Systems, Languages, and Applications, pages
681–682.

[Barik et al., 2017] Barik, T., Smith, J., Lubick, K., Holmes, E., Feng, J., Murphy-Hill,
E., and Parnin, C. (2017). Do developers read compiler error messages? In Proceed-
ings of the 39th International Conference on Software Engineering, ICSE ’17, pages
575–585, Piscataway, NJ, USA. IEEE Press.

[Barik et al., 2014] Barik, T., Witschey, J., Johnson, B., and Murphy-Hill, E. (2014).
Compiler error notifications revisited: An interaction-first approach for helping de-
velopers more effectively comprehend and resolve error notifications. In Companion
Proceedings of the 36th International Conference on Software Engineering, ICSE Com-
panion 2014, pages 536–539, New York, NY, USA. ACM.

[Barr and Trytten, 2016] Barr, V. and Trytten, D. (2016). Using turing’s craft codelab
to support cs1 students as they learn to program. ACM Inroads, 7(2):67–75.

102

www.manaraa.com

[Basit and Jarzabek, 2007] Basit, H. A. and Jarzabek, S. (2007). Efficient token based
clone detection with flexible tokenization. In Proceedings of the 6th Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering, pages 513–516.

[Becker, 2015] Becker, B. A. (2015). An exploration of the effects of enhanced compiler
error messages for computer programming novices. Master’s thesis, Dublin Institute
of Technology.

[Becker, 2016] Becker, B. A. (2016). An effective approach to enhancing compiler error
messages. In Proceedings of the 47th ACM Technical Symposium on Computing Science
Education, SIGCSE ’16, pages 126–131, New York, NY, USA. ACM.

[Benotti et al., 2018] Benotti, L., Aloi, F., Bulgarelli, F., and Gomez, M. J. (2018). The
effect of a web-based coding tool with automatic feedback on students’ performance
and perceptions. In Proceedings of the 49th ACM Technical Symposium on Computer
Science Education, SIGCSE ’18, pages 2–7, New York, NY, USA. ACM.

[Binkley et al., 2013] Binkley, D., Davis, M., Lawrie, D., Maletic, J. I., Morrell, C., and
Sharif, B. (2013). The impact of identifier style on effort and comprehension. Em-
pirical Software Engineering, 18(2):219–276.

[Böhme et al., 2017] Böhme, M., Soremekun, E. O., Chattopadhyay, S., Ugherughe,
E., and Zeller, A. (2017). Where is the bug and how is it fixed? an experiment
with practitioners. In Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2017, pages 117–128, New York, NY, USA. ACM.

[Boyd and Allevato, 2012] Boyd, E. and Allevato, A. (2012). Streamlining project setup
in eclipse for both time-constrained and large-scale assignments. In Proceedings of the
43rd ACM Technical Symposium on Computer Science Education, SIGCSE ’12, pages
667–667, New York, NY, USA. ACM.

[Brown, 1983] Brown, P. J. (1983). Error messages: The neglected area of the man/-
machine interface. Commun. ACM, 26(4):246–249.

[Bruch et al., 2009] Bruch, M., Monperrus, M., and Mezini, M. (2009). Learning from
examples to improve code completion systems. In Proceedings of the 7th Joint Meeting
of the European Software Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering, pages 213–222.

[Brune et al., 2014] Brune, P., Leiser, M., and Janke, E. (2014). Towards an easy-to-use
web application server and cloud paas for web development education. Proceedings
- 16th IEEE International Conference on High Performance Computing and Communi-
cations, HPCC 2014, 11th IEEE International Conference on Embedded Software and
Systems, ICESS 2014 and 6th International Symposium on Cyberspace Safety and Se-
curity, pages 1113–1116.

103

www.manaraa.com

[Bureau of Labor Statistics, 2018] Bureau of Labor Statistics, U. D. o. L. (2018). Occu-
pational outlook handbook: Software developers.

[Campbell et al., 2014] Campbell, J. C., Hindle, A., and Amaral, J. N. (2014). Syntax
errors just aren’t natural: Improving error reporting with language models. In Pro-
ceedings of the 11th Working Conference on Mining Software Repositories, MSR 2014,
pages 252–261, New York, NY, USA. ACM.

[Clang, 2018] Clang (2018). Expressive diagnostics.

[Cleland-Huang et al., 2005] Cleland-Huang, J., Settimi, R., BenKhadra, O., Berezhan-
skaya, E., and Christina, S. (2005). Goal-centric traceability for managing non-
functional requirements. In Proceedings of the International Conference on Software
Engineering, pages 362–371.

[Cleve and Zeller, 2000] Cleve, H. and Zeller, A. (2000). Finding failure causes through
automated testing. In Proceedings of the Fourth International Workshop on Automated
Debugging.

[CodeEnvy, 2017] CodeEnvy (2017). CodeEnvy.

[D’Antoni et al., 2017] D’Antoni, L., Singh, R., and Vaughn, M. (2017). Nofaq: Syn-
thesizing command repairs from examples. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering. ACM.

[DataUSA, 2018] DataUSA (2018). Computer science: Stem major.

[De Rosso and Jackson, 2016] De Rosso, S. P. and Jackson, D. (2016). Purposes, con-
cepts, misfits, and a redesign of git. In Proceedings of the 2016 ACM SIGPLAN Inter-
national Conference on Object-Oriented Programming, Systems, Languages, and Appli-
cations, OOPSLA 2016, pages 292–310, New York, NY, USA. ACM.

[Deißenböck and Pizka, 2005] Deißenböck, F. and Pizka, M. (2005). Concise and con-
sistent naming. In Proceedings of the 13th International Workshop on Program Com-
prehension, pages 97–106.

[Denny et al., 2014] Denny, P., Luxton-Reilly, A., and Carpenter, D. (2014). Enhancing
syntax error messages appears ineffectual. In Proceedings of the 2014 Conference
on Innovation & Technology in Computer Science Education, ITiCSE ’14, pages
273–278, New York, NY, USA. ACM.

[Dyke, 2011] Dyke, G. (2011). Which aspects of novice programmers’ usage of an ide
predict learning outcomes. In Proceedings of the 42Nd ACM Technical Symposium on
Computer Science Education, SIGCSE ’11, pages 505–510, New York, NY, USA. ACM.

[Eclise, 2018] Eclise (2018). Quick fix and quick assist.

104

www.manaraa.com

[Fisker et al., 2008] Fisker, K., McCall, D., Kölling, M., and Quig, B. (2008). Group
work support for the bluej ide. In Proceedings of the 13th Annual Conference on
Innovation and Technology in Computer Science Education, ITiCSE ’08, pages 163–
168, New York, NY, USA. ACM.

[Flowers et al., 2004] Flowers, T., Carver, C. A., and Jackson, J. (2004). Empowering
students and building confidence in novice programmers through gauntlet. In 34th
Annual Frontiers in Education, 2004. FIE 2004., pages T3H/10–T3H/13 Vol. 1.

[Ford and Staley, 2016] Ford, C. and Staley, C. (2016). Automated analysis of student
programmer coding behavior patterns (abstract only). In Proceedings of the 47th ACM
Technical Symposium on Computing Science Education, SIGCSE ’16, pages 688–688,
New York, NY, USA. ACM.

[Foundation, 2017] Foundation, E. (2017). Eclipse CHE.

[Free Software Foundation, 2004] Free Software Foundation, I. (2004). New c parser.

[Gabel and Su, 2010] Gabel, M. and Su, Z. (2010). A study of the uniqueness of source
code. In Proceedings of the 18th ACM SIGSOFT Symposium on the Foundations of
Software Engineering, pages 147–156.

[Gallardo-Valencia and Elliott Sim, 2009] Gallardo-Valencia, R. E. and Elliott Sim, S.
(2009). Internet-scale code search. In Proceedings of the 2009 ICSE Workshop on
Search-Driven Development-Users, Infrastructure, Tools and Evaluation, pages 49–52.

[Goldman et al., 2011] Goldman, M., Little, G., and Miller, R. C. (2011). Real-time
collaborative coding in a web ide. In Proceedings of the 24th Annual ACM Symposium
on User Interface Software and Technology, UIST ’11, pages 155–164, New York, NY,
USA. ACM.

[Grechanik et al., 2010] Grechanik, M., Fu, C., Xie, Q., McMillan, C., Poshyvanyk, D.,
and Cumby, C. (2010). A search engine for finding highly relevant applications. In
Proceedings of the ACM/IEEE International Conference on Software Engineering, pages
475–484.

[Guo, 2013] Guo, P. J. (2013). Online python tutor: Embeddable web-based program
visualization for cs education. In Proceeding of the 44th ACM Technical Symposium on
Computer Science Education, SIGCSE ’13, pages 579–584, New York, NY, USA. ACM.

[Gupta et al., 2017] Gupta, R., Pal, S., Kanade, A., and Shevade, S. (2017). Deepfix:
Fixing common c language errors by deep learning. In AAAI, pages 1345–1351.

[Hartmann et al., 2010] Hartmann, B., MacDougall, D., Brandt, J., and Klemmer, S. R.
(2010). What would other programmers do: Suggesting solutions to error messages.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI
’10, pages 1019–1028, New York, NY, USA. ACM.

105

www.manaraa.com

[Helminen et al., 2013] Helminen, J., Ihantola, P., and Karavirta, V. (2013). Recording
and analyzing in-browser programming sessions. In Proceedings of the 13th Koli
Calling International Conference on Computing Education Research, Koli Calling ’13,
pages 13–22, New York, NY, USA. ACM.

[Hindle et al., 2012] Hindle, A., Barr, E. T., Su, Z., Gabel, M., and Devanbu, P. (2012).
On the naturalness of software. In Proceedings of the International Conference on
Software Engineering, pages 837–847.

[Horton and Craig, 2015] Horton, D. and Craig, M. (2015). Drop, fail, pass, continue:
Persistence in cs1 and beyond in traditional and inverted delivery. In Proceedings
of the 46th ACM Technical Symposium on Computer Science Education, SIGCSE ’15,
pages 235–240, New York, NY, USA. ACM.

[Hristova et al., 2003] Hristova, M., Misra, A., Rutter, M., and Mercuri, R. (2003). Iden-
tifying and correcting java programming errors for introductory computer science
students. In Proceedings of the 34th SIGCSE Technical Symposium on Computer Sci-
ence Education, SIGCSE ’03, pages 153–156, New York, NY, USA. ACM.

[Hüsing et al., 2013] Hüsing, T., Korte, W. B., Fonstad, N., Lanvin, B., Cattaneo, G.,
Kolding, M., Lifonti, R., and van Welsum, D. (2013). e-Leadership. e-Skills for Com-
petitiveness and Innovation Vision, Roadmap and Foresight Scenarios Final Report.

[Inc., 2017a] Inc., C. (2017a). CodeAnywhere.

[Inc., 2017b] Inc., C. I. (2017b). Cloud9 IDE.

[Isa et al., 1983] Isa, B. S., Boyle, J. M., Neal, A. S., and Simons, R. M. (1983). A
methodology for objectively evaluating error messages. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’83, pages 68–71, New York,
NY, USA. ACM.

[Jadud, 2006] Jadud, M. C. (2006). Methods and tools for exploring novice compila-
tion behaviour. In Proceedings of the Second International Workshop on Computing
Education Research, ICER ’06, pages 73–84, New York, NY, USA. ACM.

[Jenkins et al., 2010] Jenkins, J., Brannock, E., and Dekhane, S. (2010). Javawide:
Innovation in an online ide: Tutorial presentation. J. Comput. Sci. Coll., 25(5):102–
104.

[Jiang and Su, 2009] Jiang, L. and Su, Z. (2009). Automatic mining of functionally
equivalent code fragments via random testing. In Proceedings of the 18th Interna-
tional Symposium on Software Testing and Analysis, pages 81–92.

[Jurafsky and Martin, 2009] Jurafsky, D. and Martin, J. H. (2009). Speech and Lan-
guage Processing (2Nd Edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

106

www.manaraa.com

[Kasto and Whalley, 2013] Kasto, N. and Whalley, J. (2013). Measuring the difficulty
of code comprehension tasks using software metrics. In Proceedings of the Fifteenth
Australasian Computing Education Conference - Volume 136, ACE ’13, pages 59–65,
Darlinghurst, Australia, Australia. Australian Computer Society, Inc.

[Kazerouni et al., 2017] Kazerouni, A. M., Edwards, S. H., Hall, T. S., and Shaffer, C. A.
(2017). Deveventtracker: Tracking development events to assess incremental devel-
opment and procrastination. In Proceedings of the 2017 ACM Conference on Innova-
tion and Technology in Computer Science Education, ITiCSE ’17, pages 104–109, New
York, NY, USA. ACM.

[Kelleher and Pausch, 2005] Kelleher, C. and Pausch, R. (2005). Lowering the barri-
ers to programming: A taxonomy of programming environments and languages for
novice programmers. ACM Comput. Surv., 37(2):83–137.

[Kim, 2017] Kim, A. (2017). Cs 61a course enrollment reaches new high, nears 2,000.

[Kim et al., 2013] Kim, D., Nam, J., Song, J., and Kim, S. (2013). Automatic patch
generation learned from human-written patches. In Proceedings of the 2013 Interna-
tional Conference on Software Engineering, ICSE ’13, pages 802–811, Piscataway, NJ,
USA. IEEE Press.

[Ko et al., 2015] Ko, A. J., Latoza, T. D., and Burnett, M. M. (2015). A practical guide
to controlled experiments of software engineering tools with human participants.
Empirical Softw. Engg., 20(1):110–141.

[Koding, 2017] Koding (2017). Koding.

[Kolling et al., 2003] Kolling, M., Quig, B., Patterson, A., and Rosenberg, J. (2003).
The BlueJ System and its Pedagogy. Computer Science Education, 13(4):249–268.

[Kori et al., 2015] Kori, K., Pedaste, M., TÃ̧tnisson, E., Palts, T., Altin, H., Rantsus, R.,
Sell, R., Murtazin, K., and RÃijÃijtmann, T. (2015). First-year dropout in ict studies.
In 2015 IEEE Global Engineering Education Conference (EDUCON), pages 437–445.

[Kummerfeld and Kay, 2003] Kummerfeld, S. K. and Kay, J. (2003). The neglected bat-
tle fields of syntax errors. In Proceedings of the Fifth Australasian Conference on Com-
puting Education - Volume 20, ACE ’03, pages 105–111, Darlinghurst, Australia, Aus-
tralia. Australian Computer Society, Inc.

[Lardinois, 2016] Lardinois, F. (2016). Cloud development platform nitrous.io shuts
down.

[Lazowska et al., 2014] Lazowska, E., Roberts, E., and Kurose, J. (2014). Tsunami or
sea change? responding to the explosion of student interest in computer science.
http://lazowska.cs.washington.edu/NCWIT.pdf. Accessed: 2017-11-28.

107

http://lazowska.cs.washington.edu/NCWIT.pdf

www.manaraa.com

[Le et al., 2013] Le, V., Gulwani, S., and Su, Z. (2013). SmartSynth: synthesizing
smartphone automation scripts from natural language. In Proceeding of the 11th
Annual International Conference on Mobile Systems, Applications, and Services, pages
193–206.

[Le Goues et al., 2012] Le Goues, C., Nguyen, T., Forrest, S., and Weimer, W. (2012).
Genprog: A generic method for automatic software repair. IEEE Trans. Softw. Eng.,
38(1):54–72.

[Li et al., 2004] Li, Z., Lu, S., Myagmar, S., and Zhou, Y. (2004). CP-Miner: a tool for
finding copy-paste and related bugs in operating system code. In Proceedings of the
Symposium on Operating Systems Design & Implementation, pages 289–302.

[Little and Miller, 2007] Little, G. and Miller, R. C. (2007). Keyword programming in
Java. In Proceedings of the IEEE/ACM International Conference on Automated Software
Engineering, pages 84–93.

[Little et al., 2010] Little, G., Miller, R. C., Chou, V. H., Bernstein, M., Lau, T., and
Cypher, A. (2010). Sloppy programming. In Cypher, A., Dontcheva, M., Lau, T., and
Nichols, J., editors, No Code Required, pages 289–307. Morgan Kaufmann.

[Long et al., 2017] Long, F., Amidon, P., and Rinard, M. (2017). Automatic inference of
code transforms for patch generation. In Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2017, pages 727–739, New York,
NY, USA. ACM.

[Long and Rinard, 2016] Long, F. and Rinard, M. (2016). Automatic patch generation
by learning correct code. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’16, pages 298–312, New
York, NY, USA. ACM.

[Lund, 2001] Lund, A. (2001). Measuring usability with the use questionnaire. 8.

[Mandelin et al., 2005] Mandelin, D., Xu, L., Bodík, R., and Kimelman, D. (2005). Jun-
gloid mining: helping to navigate the API jungle. In Proceedings of the 2005 ACM
SIGPLAN Conference on Programming Language Design and Implementation, pages
48–61.

[Maniloff, 1996] Maniloff, J. (1996). The minimal cell genome: "on being the right
size". Proceedings of the National Academy of Sciences, 93(19):10004–10006.

[Manning and Schütze, 1999] Manning, C. D. and Schütze, H. (1999). Foundations of
Statistical Natural Language Processing. MIT Press, Cambridge, MA, USA.

[Marceau et al., 2011a] Marceau, G., Fisler, K., and Krishnamurthi, S. (2011a). Mea-
suring the effectiveness of error messages designed for novice programmers. In
Proceedings of the 42Nd ACM Technical Symposium on Computer Science Education,
SIGCSE ’11, pages 499–504, New York, NY, USA. ACM.

108

www.manaraa.com

[Marceau et al., 2011b] Marceau, G., Fisler, K., and Krishnamurthi, S. (2011b). Mind
your language: On novices’ interactions with error messages. In Proceedings of the
10th SIGPLAN Symposium on New Ideas, New Paradigms, and Reflections on Program-
ming and Software, Onward! 2011, pages 3–18, New York, NY, USA. ACM.

[Matrix, 2014] Matrix, S. (2014). The netflix effect: Teens, binge watching, and on-
demand digital media trends. Jeunesse: Young People, Texts, Cultures, 6(1):119–138.

[McCabe, 1976] McCabe, T. J. (1976). A complexity measure. IEEE Trans. Softw. Eng.,
2(4):308–320.

[McIver, 2000] McIver, L. (2000). The effect of programming language on error rates
of novice programmers.

[McMillan et al., 2011] McMillan, C., Grechanik, M., Poshyvanyk, D., Xie, Q., and Fu,
C. (2011). Portfolio: finding relevant functions and their usage. In Proceedings of the
33rd International Conference on Software Engineering, pages 111–120.

[McMillan et al., 2012] McMillan, C., Hariri, N., Poshyvanyk, D., Cleland-Huang, J.,
and Mobasher, B. (2012). Recommending source code for use in rapid software pro-
totypes. In Proceedings of the 34th International Conference on Software Engineering,
pages 848–858.

[Mechaber, 2014] Mechaber, E. (2014). President obama is the first president to
write a line of code. https://obamawhitehouse.archives.gov/blog/2014/12/10/
president-obama-first-president-write-line-code. Accessed: 2017-11-28.

[Miller, 1956] Miller, G. A. (1956). The magical number seven, plus or minus two:
some limits on our capacity for processing information. Psychological review,
63(2):81.

[Miller et al., 2008] Miller, R. C., Chou, V. H., Bernstein, M., Little, G., Van Kleek, M.,
Karger, D., and schraefel, m. (2008). Inky: a sloppy command line for the web
with rich visual feedback. In Proceedings of the 21st Annual ACM Symposium on User
Interface Software and Technology, pages 131–140.

[Misherghi and Su, 2006] Misherghi, G. and Su, Z. (2006). Hdd: Hierarchical delta de-
bugging. In Proceedings of the 28th International Conference on Software Engineering,
ICSE ’06, pages 142–151, New York, NY, USA. ACM.

[Monperrus, 2014] Monperrus, M. (2014). A critical review of "automatic patch gen-
eration learned from human-written patches": Essay on the problem statement and
the evaluation of automatic software repair. In Proceedings of the 36th International
Conference on Software Engineering, ICSE 2014, pages 234–242, New York, NY, USA.
ACM.

109

https://obamawhitehouse.archives.gov/blog/2014/12/10/president-obama-first-president-write-line-code
https://obamawhitehouse.archives.gov/blog/2014/12/10/president-obama-first-president-write-line-code

www.manaraa.com

[Mujumdar et al., 2011] Mujumdar, D., Kallenbach, M., Liu, B., and Hartmann, B.
(2011). Crowdsourcing suggestions to programming problems for dynamic web de-
velopment languages. In CHI ’11 Extended Abstracts on Human Factors in Computing
Systems, CHI EA ’11, pages 1525–1530, New York, NY, USA. ACM.

[Munson, 2017] Munson, J. P. (2017). Metrics for timely assessment of novice pro-
grammers. J. Comput. Sci. Coll., 32(3):136–148.

[Nguyen et al., 2012] Nguyen, A. T., Nguyen, T. T., Nguyen, H. A., Tamrawi, A.,
Nguyen, H. V., Al-Kofahi, J., and Nguyen, T. N. (2012). Graph-based pattern-
oriented, context-sensitive source code completion. In Proceedings of the 34th In-
ternational Conference on Software Engineering, pages 69–79.

[Nguyen et al., 2013] Nguyen, T. T., Nguyen, A. T., Nguyen, H. A., and Nguyen, T. N.
(2013). A statistical semantic language model for source code. In Proceedings of
the 9th Joint Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering.

[Nienaltowski et al., 2008] Nienaltowski, M.-H., Pedroni, M., and Meyer, B. (2008).
Compiler error messages: What can help novices? In Proceedings of the 39th SIGCSE
Technical Symposium on Computer Science Education, SIGCSE ’08, pages 168–172,
New York, NY, USA. ACM.

[Omar et al., 2017] Omar, C., Voysey, I., Hilton, M., Aldrich, J., and Hammer, M.
(2017). Hazelnut: A Bidirectionally Typed Structure Editor Calculus. In 44th ACM
SIGPLAN Symposium on Principles of Programming Languages (POPL 2017).

[Oracle, 2012] Oracle (2012). Oracle openJDK. http://openjdk.java.net/.

[Pappas et al., 2016] Pappas, I. O., Giannakos, M. N., and Jaccheri, L. (2016). Inves-
tigating factors influencing students’ intention to dropout computer science studies.
In Proceedings of the 2016 ACM Conference on Innovation and Technology in Computer
Science Education, ITiCSE ’16, pages 198–203, New York, NY, USA. ACM.

[Paterson and Haddow, 2007] Paterson, J. H. and Haddow, J. (2007). Tool Support for
Implementation of Object-Oriented Class Relationships and Patterns. Innovation in
Teaching and Learning in Information and Computer Sciences, 6(4):108–124.

[Paterson et al., 2005] Paterson, J. H., Haddow, J., Birch, M., and Monaghan, A.
(2005). Using the bluej ide in a data structures course. In Proceedings of the 10th An-
nual SIGCSE Conference on Innovation and Technology in Computer Science Education,
ITiCSE ’05, pages 349–349, New York, NY, USA. ACM.

[Pettit et al., 2017] Pettit, R. S., Homer, J., and Gee, R. (2017). Do enhanced compiler
error messages help students?: Results inconclusive. In Proceedings of the 2017 ACM
SIGCSE Technical Symposium on Computer Science Education, SIGCSE ’17, pages 465–
470, New York, NY, USA. ACM.

110

http://openjdk.java.net/

www.manaraa.com

[Pu et al., 2016] Pu, Y., Narasimhan, K., Solar-Lezama, A., and Barzilay, R. (2016).
sk_p: A neural program corrector for moocs. In Companion Proceedings of the 2016
ACM SIGPLAN International Conference on Systems, Programming, Languages and Ap-
plications: Software for Humanity, SPLASH Companion 2016, pages 39–40, New
York, NY, USA. ACM.

[Regehr et al., 2012] Regehr, J., Chen, Y., Cuoq, P., Eide, E., Ellison, C., and Yang, X.
(2012). Test-case reduction for c compiler bugs. In Proceedings of the 33rd ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’12,
pages 335–346, New York, NY, USA. ACM.

[Reiss, 2009a] Reiss, S. P. (2009a). Semantics-based code search. In Proceedings of the
31st International Conference on Software Engineering, pages 243–253.

[Reiss, 2009b] Reiss, S. P. (2009b). Specifying what to search for. In Proceedings of the
2009 ICSE Workshop on Search-Driven Development-Users, Infrastructure, Tools and
Evaluation, pages 41–44.

[Rivest, 1998] Rivest, R. (1998). Chaffing and winnowing: Confidentiality without
encryption. web page.

[Rolim et al., 2017] Rolim, R., Soares, G., D’Antoni, L., Polozov, O., Gulwani, S., Gheyi,
R., Suzuki, R., and Hartmann, B. (2017). Learning syntactic program transforma-
tions from examples. In Proceedings of the 39th International Conference on Software
Engineering, ICSE ’17, pages 404–415, Piscataway, NJ, USA. IEEE Press.

[Runnable, 2017] Runnable (2017). Runnable.

[Schleimer et al., 2003] Schleimer, S., Wilkerson, D. S., and Aiken, A. (2003). Win-
nowing: Local algorithms for document fingerprinting. In Proceedings of the 2003
ACM SIGMOD International Conference on Management of Data, SIGMOD ’03, pages
76–85, New York, NY, USA. ACM.

[Schuler et al., 2007] Schuler, D., Dallmeier, V., and Lindig, C. (2007). A dynamic birth-
mark for Java. In Proceedings of the International Conference on Automated Software
Engineering, pages 274–283.

[Schulte and Bennedsen, 2006] Schulte, C. and Bennedsen, J. (2006). What do teach-
ers teach in introductory programming? In Proceedings of the Second International
Workshop on Computing Education Research, ICER ’06, pages 17–28, New York, NY,
USA. ACM.

[Seo et al., 2014] Seo, H., Sadowski, C., Elbaum, S., Aftandilian, E., and Bowdidge, R.
(2014). Programmers’ build errors: A case study (at google). In Proceedings of the
36th International Conference on Software Engineering, ICSE 2014, pages 724–734,
New York, NY, USA. ACM.

111

www.manaraa.com

[Shah, 2014] Shah, D. (2014). Online courses raise their game: A review of
mooc stats and trends in 2014. https://www.class-central.com/report/
moocs-stats-and-trends-2014/. Accessed: 2017-11-28.

[Siegmund et al., 2014] Siegmund, J., Kästner, C., Liebig, J., Apel, S., and Hanenberg,
S. (2014). Measuring and modeling programming experience. Empirical Software
Engineering, 19(5):1299–1334.

[Singh et al., 2013] Singh, R., Gulwani, S., and Solar-Lezama, A. (2013). Automated
feedback generation for introductory programming assignments. In Proceedings of
the 34th ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, PLDI ’13, pages 15–26, New York, NY, USA. ACM.

[Society, 2018] Society, T. A. (2018). Six-figure tech salaries: Creating the next devel-
oper workforce.

[Soper, 2014] Soper, T. (2014). Analysis: The exploding demand for computer sci-
ence education, and why america needs to keep up. https://www.geekwire.
com/2014/analysis-examining-computer-science-education-explosion/. Ac-
cessed: 2017-11-28.

[Strasburger et al., 2013] Strasburger, V. C., Hogan, M. J., Mulligan, D. A., Ameenud-
din, N., Christakis, D. A., Cross, C., Fagbuyi, D. B., Hill, D. L., Levine, A. E., McCarthy,
C., et al. (2013). Children, adolescents, and the media. Pediatrics, 132(5):958–961.

[Toomey, 2011] Toomey, W. (2011). Bluej with modified error subsystem. http://
minnie.tuhs.org/Programs/BlueJErrors/index.html. Accessed: 2017-09-18.

[Torres, 2018] Torres, C. (2018). Demand for programmers hits full boil as u.s. job
market simmers.

[Traver, 2010] Traver, V. J. (2010). On compiler error messages: What they Say and
what they Mean. Adv. Human-Computer Interaction, 2010:602570:1–602570:26.

[van Deursen et al., 2010] van Deursen, A., Mesbah, A., Cornelissen, B., Zaidman, A.,
Pinzger, M., and Guzzi, A. (2010). Adinda: A knowledgeable, browser-based ide. In
Proceedings of the 32Nd ACM/IEEE International Conference on Software Engineering
- Volume 2, ICSE ’10, pages 203–206, New York, NY, USA. ACM.

[van Tonder et al., 2008] van Tonder, M., Naude, K., and Cilliers, C. (2008). Jenuity: A
lightweight development environment for intermediate level programming courses.
In Proceedings of the 13th Annual Conference on Innovation and Technology in Com-
puter Science Education, ITiCSE ’08, pages 58–62, New York, NY, USA. ACM.

[Wang et al., 2017a] Wang, K., Lin, B., Rettig, B., Pardi, P., and Singh, R. (2017a).
Data-driven feedback generator for online programing courses. In Proceedings of the
Fourth (2017) ACM Conference on Learning @ Scale, L@S ’17, pages 257–260, New
York, NY, USA. ACM.

112

https://www.class-central.com/report/moocs-stats-and-trends-2014/
https://www.class-central.com/report/moocs-stats-and-trends-2014/
https://www.geekwire.com/2014/analysis-examining-computer-science-education-explosion/
https://www.geekwire.com/2014/analysis-examining-computer-science-education-explosion/
http://minnie.tuhs.org/Programs/BlueJErrors/index.html
http://minnie.tuhs.org/Programs/BlueJErrors/index.html

www.manaraa.com

[Wang et al., 2018] Wang, K., Singh, R., and Su, Z. (2018). Search, align, and repair:
Data-driven feedback generation for introductory programming exercises. In Pro-
ceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and
Implementation, New York, NY, USA. ACM.

[Wang et al., 2017b] Wang, L., Sy, A., Liu, L., and Piech, C. (2017b). Deep Knowledge
Tracing On Programming Exercises. In Proceedings of the Fourth (2017) ACM Confer-
ence on Learning @ Scale - L@S ’17, pages 201–204, New York, New York, USA. ACM
Press.

[Watson and Li, 2014] Watson, C. and Li, F. W. (2014). Failure rates in introductory
programming revisited. In Proceedings of the 2014 Conference on Innovation &
Technology in Computer Science Education, ITiCSE ’14, pages 39–44, New York, NY,
USA. ACM.

[Weimer et al., 2009] Weimer, W., Nguyen, T., Le Goues, C., and Forrest, S. (2009).
Automatically finding patches using genetic programming. In Proceedings of the 31st
International Conference on Software Engineering, ICSE ’09, pages 364–374, Wash-
ington, DC, USA. IEEE Computer Society.

[Whitney et al., 2015] Whitney, M., Lipford-Richter, H., Chu, B., and Zhu, J. (2015).
Embedding secure coding instruction into the ide: A field study in an advanced cs
course. In Proceedings of the 46th ACM Technical Symposium on Computer Science
Education, SIGCSE ’15, pages 60–65, New York, NY, USA. ACM.

[Yi et al., 2017] Yi, J., Ahmed, U. Z., Karkare, A., Tan, S. H., and Roychoudhury, A.
(2017). A feasibility study of using automated program repair for introductory pro-
gramming assignments. In Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE 2017, pages 740–751, New York, NY, USA. ACM.

[Zeller and Hildebrandt, 2002] Zeller, A. and Hildebrandt, R. (2002). Simplifying and
isolating failure-inducing input. IEEE Trans. Softw. Eng., 28(2):183–200.

[Zhang et al., 2012] Zhang, C., Yang, J., Zhang, Y., Fan, J., Zhang, X., Zhao, J., and
Ou, P. (2012). Automatic parameter recommendation for practical API usage. In
Proceedings of the 34th International Conference on Software Engineering, pages 826–
836.

[Zhu et al., 2013] Zhu, J., Lipford, H. R., and Chu, B. (2013). Interactive support for
secure programming education. In Proceeding of the 44th ACM Technical Symposium
on Computer Science Education, SIGCSE ’13, pages 687–692, New York, NY, USA.
ACM.

113

	List of Figures
	List of Tables
	Abstract
	Acknowledgments
	Introduction
	Student Adoption and Perceptions of a Web Integrated Development Environment
	Introduction
	Related Work
	Kodethon Description and Adoption
	Main Features
	Architecture
	Deployment and Adoption

	User Survey
	Results
	Usage
	Perceptions
	Characteristics of Adopters

	Broader Lessons
	Threats to Validity
	Conclusion and Future Work

	CompAssist: Synthesizing Minimal Compilation Repair Examples
	Introduction
	Overview
	Offline Generation
	Fuzzing a Compilable Program
	Reducing a Compilation Repair Example

	Online Search
	Evaluation
	Experimental Setup
	Error Message Coverage (Breadth)
	Error Message Coverage (Depth)
	Repair Example Simplicity

	User Study
	Pilot Studies
	Design
	Results
	Additional Feedback

	Discussion
	Related Work
	Compiler Error Augmentation
	Automated Program Repair

	Conclusion and Future Work

	On the Lexical Distinguishability of Source Code
	Introduction
	Problem Formulation
	Bag-of-Words Model
	Lexicons
	Illustration of the Bag-of-Words Model
	Distinguishable Code
	The Minset Algorithm

	Setup and Implementation
	Code Corpus
	The Feature Extractor
	The Minset Algorithm Implementation

	Results and Analysis
	Lexical Distinguishability of Source Code
	Minsets over LEX
	What is a Natural, Minimal Lexicon?
	The Effect of Multiplicity and Abnormally Large Methods on Distinguishability
	Minset Over Min4

	Discussion
	Applications
	Related Work
	Conclusion and Future Work

	Conclusion

